The Optical Networking and Communication
Conference & Exhibition

San Diego Convention Center,
San Diego, California, USA

SC443 - Optical Amplifiers: From Fundamental Principles to Technology Trends

Sunday, 08 March
13:30 - 17:30

Short Course Level: Beginner and Advanced Beginner


Michael Vasilyev, Lu Li; University of Texas at Arlington,USA ;
SubCom, USA

Short Course Description:

Optical amplification is a key enabler of modern optical communication systems. Not only do optical amplifiers eliminate the need for electronic repeaters between the fiber spans, but they also do it in a cost-effective way by simultaneously processing a large number of optical channels. The steady progress in optical amplifiers has broadened their gain windows, enabled distributed amplification, reached beyond the 3-dB quantum limit of noise figure, and led to novel signal-processing schemes.

This course aims at providing a comprehensive and consistent understanding of various optical amplification technologies from a physical point of view. It will first describe stimulated emission processes as the operating principle of optical amplification, then review optical amplifier technologies used for optical communication systems and networks. It will identify the basic roles and key parameters of the optical amplifiers in communication systems, as well as classify the amplifiers into lump or distributed, phase-insensitive or phase-sensitive, etc. The course will then describe several optical amplifier platforms, discuss the main properties and practical design considerations of each, and introduce future trends in amplification technology.

Short Course Benefits:

This course should enable participants to:

  • Define the roles of optical amplifiers in optical communication networks.
  • List the key parameters of optical amplifiers important for system design.
  • Identify the stimulated emission phenomenon as the common physical process for optical amplification.
  • Explain the difference between phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs).
  • List several material platforms of optical amplification and key differences in their performances and characteristics.
  • Discuss optical amplification technologies such as erbium-doped fiber amplifier (EDFA), fiber Raman amplifier (FRA), semiconductor optical amplifier (SOA), and fiber-optical parametric amplifier (FOPA).
  • Describe the practical issues of each of the optical amplification technologies listed above.
  • Grasp an insight into future trends in research and development of optical communication enabled by advances in optical amplification technologies.
Short Course Audience:

This beginner/advanced-beginner course is intended for a diverse audience including newcomers to the field of optical fiber communication, and especially for lightwave system engineers and opto-electronic sub-system designers. Some basic knowledge of optical fiber communication technologies will help in better understanding the course but is not a prerequisite.

Instructor Biography:

Lu Li is a senior member of technical staff at SubCom LLC, Eatontown, New Jersey. He received Ph.D. from the University of Texas at Arglinton, where he investigated multi-channel optical regeneration. Since joining SubCom in 2017, Dr. Li has worked on transoceanic cable system design and optimization. His current interests include all-optical processing, nonlinear-propagation, optical amplfiers and ROADMs in undersea transmission systems.

Michael Vasilyev is a Professor of Electrical Engineering at the University of Texas at Arlington. He received Ph.D. from Northwestern University. Prior to joining the academia, he was a senior research scientist at Corning, Inc., where he investigated noise and nonlinearities in EDFAs and Raman amplifiers to optimize ultra-long-haul transmission systems. Prof. Vasilyev’s research interests include novel optical amplifiers, nonlinear-optical signal processing, quantum communications, and nanophotonics. He is a Fellow of the OSA and has over 200 publications and holds 10 patents.

Sponsored by: