Technical Conference: 15 - 19 March 2026
Exhibition: 17 - 19 March 2026
Los Angeles Convention Center | Los Angeles, California, USA

Technical Conference: 15 - 19 March 2026
Exhibition: 17 - 19 March 2026
Los Angeles Convention Center | Los Angeles, California, USA

Optical Amplifiers: From Fundamental Principles to Technology Trends

SC443 - Optical Amplifiers: From Fundamental Principles to Technology Trends

15 Mar 2026
13:00 - 17:00

Short Course Level

Beginner

Short Course Description

Optical amplification is a key enabler of modern optical communication systems. Not only do optical amplifiers eliminate the need for electronic repeaters between the fiber spans, but they also do it in a cost-effective way by simultaneously processing a large number of optical channels. The steady progress in optical amplifiers has broadened their gain windows, enabled distributed amplification, reached beyond the 3-dB quantum limit of noise figure, and led to novel signal-processing schemes.

This course aims to provide a comprehensive and consistent understanding of various optical amplification technologies from a physical point of view. It will first describe stimulated emission processes as the operating principle of optical amplification, then review optical amplifier technologies used for optical communication systems and networks. It will identify the basic roles and key parameters of the optical amplifiers in communication systems, as well as classify the amplifiers into lump or distributed, phase-insensitive or phase-sensitive, etc. The course will then describe several optical amplifier platforms, discuss the main properties and practical design considerations of each, and introduce future trends in amplification technology. Temporary licenses to Lumerical Solutions and open-source tools will be provided during and after the workshop to complete the design cycle.

Short Course Benefits

This course should enable participants to:

  • Define the roles of optical amplifiers in optical communication networks.
  • List the key parameters of optical amplifiers important for system design.
  • Identify the stimulated emission phenomenon as the common physical process for
  • optical amplification.
  • Explain the difference between phase-insensitive amplifiers (PIAs) and phase-sensitive
  • amplifiers (PSAs).
  • List several material platforms of optical amplification and key differences in their
  • performances and characteristics.
  • Discuss optical amplification technologies such as erbium-doped fiber amplifier (EDFA),
  • fiber Raman amplifier (FRA), semiconductor optical amplifier (SOA), and fiber-optical
  • parametric amplifier (FOPA).
  • Describe the practical issues of each of the optical amplification technologies listed
  • above.
  • Grasp an insight into future trends in research and development of optical
  • communication enabled by advances in optical amplification technologies.

Short Course Audience

This beginner/advanced-beginner course is intended for a diverse audience including newcomers to the field of optical fiber communication, and especially for lightwave system
engineers and opto-electronic sub-system designers. Some basic knowledge of optical fiber communication technologies will help in better understanding the course but is not a prerequisite.

  • Peter Andrekson

    Chalmers University of Technology, Sweden

    About the Instructor

    Peter Andrekson is a Professor of Photonics at Chalmers University of Technology in Sweden where he also received his PhD in 1988. He was with AT&T Bell Laboratories, Murray Hill, N.J. (1989-1992), director of Research at Cenix Inc. in Allentown, PA (2000-2003) and with the newly established Center for Optical Technologies at Lehigh University,
    Bethlehem, PA (2003-2004). His research interests include many aspects of fiber communications such as optical amplifiers, nonlinear pulse propagation, all-optical processing,
    and high spectral efficiency transmission. He was co-founder of the optical test & measurement company Picosolve Inc. He is a Fellow of the OSA, the IEEE and the Royal Swedish Academy of Engineering Sciences (IVA) and the author of over 500 publications and conference papers.

  • Michael Vasilyev

    University of Texas at Arlington, USA

    About the Instructor

    Michael Vasilyev is a Professor of Electrical Engineering at the University of Texas at Arlington. He received Ph.D. from Northwestern University in 1999. Prior to joining the academia, he was a senior research scientist at Corning, Inc., where he investigated noise and nonlinearities in EDFAs and Raman amplifiers to optimize ultra-long-haul transmission systems. Prof. Vasilyev’s research interests include novel optical amplifiers, nonlinear-optical signal processing, quantum communications, and nanophotonics. He is a Fellow of the OSA and SPIE, has over 250 publications, and holds 10 patents.