• Technical Conference:  30 March – 03 April 2025
  • Exhibition: 01 – 03 April 2025
  • Moscone Center, San Francisco, California, USA
PRESS RELEASE

16 January 2024

Contact:

Media@ofcconference.org

12-spatial-channel WDM/SDM transmission over transoceanic distance

Coupled multi-core fiber helps pave the way to higher capacity submarine fiber optic cables

SAN DIEGO - Researchers have achieved wavelength/space-division multiplexed (WDM/SDM) transmission across a transoceanic distance of 7280 km with an unprecedented 12 spatial channels using a coupled multi-core fiber with a standard cladding diameter. This accomplishment opens new possibilities for increasing the capacity of current submarine cabling technology using fiber technology that doesn’t take up more space.

This research, collaborated with NEC Corporation and NTT Corporation in Japan, will be presented by Manabu Arikawa from NEC Corporation at OFC, the premier global event for optical communications and networking, which will take place as a hybrid event 24 – 28 March 2024 at the San Diego Convention Center.

“Submarine cable systems are vital infrastructure for our lives, connecting the world across oceans; future cables require more and more capacity because of the exponentially growing global traffic demand,” said Arikawa. “This research result can lead to higher capacity submarine cables, reduced cost per transmitted bit, and more efficient connectivity by significantly increasing the number of spatial channels for the same amount of optical fibers in the cables.”

WDM and SDM are used to maximize the capacity and efficiency of optical fiber communication systems. WDM works by transmitting multiple signals simultaneously over a single optical fiber by assigning each channel a unique wavelength of light whereas SDM uses separate spatial paths or fiber cores to transmit multiple data streams within a single optical fiber or across different fibers.

For submarine cables, achieving more than 10 spatial channels has only been demonstrated for transmission distances of up to 1001 km with a 15-mode fiber or 1560 km with a 10-mode fiber. The challenge to achieving high spatial count transmission over transoceanic distances is to find a way to reduce the spatial mode dispersion (SMD) and mode-dependent loss (MDL) of the transmission line. Multi-core fibers are good candidates for this because their multiple individual cores can each carry an optical communication channel, allowing parallel data transmission. Compared to the uncoupled version, coupled multi-core fibers can accommodate many more cores in a standard 125-µm diameter cladding.

In the new work, the researchers carried out WDM/SDM transmission using a 32-Gbaud PDM-QPSK modulation format over a recirculating loop consisting of a single 52-km length of coupled 12-core fiber (C12CF) with a standard cladding diameter. After determining the optimum span input power, they evaluated transmission performance at three wavelength ranges in the C-band.

They observed error-free transmission after forward error correction for wavelengths up to 7280 km (140 loops) for 1536.6 nm and up to 9360 km (180 loops) for 1550.9 nm and 1560.6 nm in a single-span loop configuration. They also demonstrated a spatial mode dispersion of 0.1 ns and mode-dependent loss of 0.3 dB per 52-km C12CF span, together with relatively low wavelength dependence.

“One of the following important steps is the evaluation of large-scale multiple-input multiple-output (MIMO) processing in real-time implementation from the point of view of the future realization of a MIMO transceiver for optical communication,” said Arikawa. Another important topic is the impact and scalability of the MDL of the fibers with the number of spatial channels to characterize and overcome this capacity limitation in the future.

About OFC

The 2024 Optical Fiber Communication Conference and Exhibition (OFC) is the premier conference and exhibition for optical communications and networking professionals. For nearly 50 years, OFC has drawn attendees from all corners of the globe to meet and greet, teach and learn, make connections and move business forward.

OFC includes dynamic business programming, an exhibition of global companies and high impact peer-reviewed research that, combined, showcase the trends that are shaping the entire optical networking and communications industry. OFC is co-sponsored by the IEEE Communications Society (IEEE/ComSoc) and the IEEE Photonics Society and co-sponsored and managed by Optica (formerly OSA). OFC in 2024 will be presented in a hybrid format with in-person and virtual components and will take place 24-28 March 2024 at the San Diego Convention Center in San Diego, California, USA. 

Learn more and engage on LinkedIn, follow @OFCConference on X (formerly Twitter) and watch highlights on OFC YouTube.