Table of Contents

Conference Schedule	2
Corporate Sponsors	3
General Information	
Customer Service and Conference Information	4
	4
	4
First Aid Station	4
	4
	4
OFC Conference App	5
Join the Conversation! (Social Media Information)	5
Registration	5
Speaker Ready Room	5
Wireless Internet Access	5
Short Course Schedule	7
Special Programming	
Workshops	9
	4
	4
Panels	6
Special Sessions	6
Demo Zone	7
Rump Session: Is the Silicon Photonics Platform about to be	
Standardized, Diversified or Supplanted?	8
Open Networking Summit: Top to Bottom: Practical Approaches	
to Openness, Disaggregation, and Reaggregation in Optical	
	8
Postdeadline Paper Presentations 1	8

Special Events
OFC Plenary Session 21
OFC and Co-Sponsor Awards and Honors 22
Activities on the Show Floor
Exhibition
Sponsoring Society Exhibits 24
Suzanne R. Nagel Lounge 24
Market Watch
Network Operator Summit 25
Data Center Summit
OFCnet
Poster Presentations
Technical Program and Steering Committees
Explanation of Session Codes
Agenda of Sessions
Technical Program
Abstracts
Key to Authors and Presiders 122

The information in this program is as of 18 January 2023.

In an effort to support sustainability and Go Green Initiatives, OFC will not be printing update sheets. Please consult the Conference App for the latest changes.

Technical Registrants: Download digest papers by visiting ofcconference.org and clicking on the "Download Digest Papers" on the home page. Recorded presentations are available from the same page by clicking "View Presentations."

OFC® and Optical Fiber Communication Conference® are registered trademarks of Optica (formerly OSA).

Conference Schedule at a Glance

All times reflect Pacific Time Zone	Sunday 05 March	Monday 06 March	Tuesday 07 March	Wednesday 08 March	Thursday 09 March
Registration	07:30–19:00	07:30–17:30	07:00-18:00	07:30-17:00	07:30–15:00
Programming					
Short Courses	08:30-17:00	08:30–17:30			
Workshops	13:00–18:30				
Hack Your Research! Tools and Tricks for Today's Telecommunications Techies	19:00-21:00				
Technical Sessions		08:00–18:30	14:00-18:30	08:00–18:30	08:00–16:00
Symposium: Quantum Information and Optical Communication Networks: Emerging Research Areas, Challenges and Opportunities		14:00–18:30			
Symposium: The Crucial Role of Photonics in Achieving the UN Sustainability Development Goals: Learnings and Opportunities			14:00–18:30		
Symposium: Beyond the Hype of Network Analytics: Use Cases, Feasibility and Barriers				14:00-18:30	
Special Session: Ultra-Stable Frequency Sources and their Future Applications in Telecom		08:00–10:00			
Special Session: High Performance Networks for Future Data Center and Computing Applications		10:30–12:30			
Special Session: Photonics for Visible Wavelengths		İ		08:00–16:00	
Open Networking Summit: Top to Bottom: Practical Approaches to Openness, Disaggregation, and Reaggregation in Optical Communication				16:30–18:30	
Demo Zone		14:00–16:15			
Rump Session: Is the Silicon Photonics Platform about to be Standardized, Diversified or Supplanted?			19:30-21:30		
Poster Sessions				10:30–12:30	10:30–12:30
Postdeadline Papers					16:30–18:30
Exhibition and Show Floor Activities	-	<u>`</u>			•
Exhibition and Show Floor (includes Expo Theater I, II, III, Career Zone and Suzanne R. Nagel Lounge)			10:00-17:00	10:00-17:00	10:00-16:00
Unopposed Exhibit-Only Time			(10:00–14:00)	(12:30–14:00)	(12:30–14:00)
Market Watch - Expo Theater I Sponsored by Cisco			10:30–15:30	14:45–16:15	10:30–13:45
Network Operator Summit - Expo Theater I				10:15–14:30	
Data Center Summit – Expo Theater II Sponsored by Amphenol			12:00-15:45		
Special Events					
Optical Transmission Systems – Design and Simulation Workshop (Presented by the Optica Foundation & VPIphotonics)	13:00–18:00				
OFC Mentor/Mentee Meet-Up		12:00-13:00			
The Journal Review Process: All You Need to Know!		14:00–15:30			
Birds of a Feather: Designing and Operating the Next Generation Optical Photonic Networks		16:30–18:30			
Photonics Society of Chinese Heritage Workshop & Networking Social		17:00–19:30			
Student Party		19:00-21:00			
Plenary Session			08:00-10:00		
Conversation with the Plenary Speakers			10:15–10:45		
Optical Communications Technical Group Poster Pitch Competition			11:00–12:00		
Awards Ceremony and Luncheon Supported by Corning			12:00–14:00		
Conference Reception			18:30–20:00		
International Women's Day Breakfast				07:00-08:30	
The Art of Writing the Perfect OFC Paper				10:30-12:00	
Rise and Shine Fun Run/Walk					06:00-07:00

General Information

Customer Service and Conference Information

Convention Center Lobby

Please visit the Customer Service and Conference Information desk to get information on:

- Parking
- Coat and Baggage Check
- Restaurant Information
- General Conference Information
- Lost and Found (for after-hours Lost and Found, please go to the OFC Security Office located in Show Office D. Look for the security sign).

Exhibition

Exhibit Halls B-G

Schedule plenty of time to roam the Exhibition, visit with the hundreds of companies represented and see the latest products and technologies.

Exhibition Hours

Tuesday, 07 March	10:00–17:00
Unopposed Exhibit-Only Time	10:00–14:00
Wednesday, 08 March	10:00 -17:00
Unopposed Exhibit-Only Time	12:30–14:00
Thursday, 09 March	10:00–16:00
Unopposed Exhibit-Only Time	12:30–14:00

Event Policies and Terms/Code of Conduct

All guests, attendees, speakers, and exhibitors are subject to the Event Policies and Terms, including the Code of Conduct. The full text is available at **ofcconference.org/eventpolicies**. Conference management reserves the right to take any and all appropriate actions to enforce the Code of Conduct, up to and including ejection from the conference individuals who fail to comply with the policy.

First Aid Station

Box Office E

A first aid station will be operated according to the schedule below. In addition, information regarding local medical facilities will be available.

First Aid Station Hours

Sunday, 05 March	08:00–17:00
Monday, 06 March	08:00–17:00
Tuesday, 07 March	08:00–17:00
Wednesday, 08 March	08:00–17:00
Thursday, 09 March	08:00–17:00

Emergencies - Contact Security Command Center on house phone at ext. 5911 or call +1 619.525.5911.

Media Center

Rooms 4, 5A and 5B

The Media Center consists of a Media Room, 5A, and semi-private space for one-on-one interviews and/or briefings with media and analysts. The media room is restricted to registered media/analysts holding a Media badge.

Media Center Hours

Sunday, 05 March	12:00–16:00
Monday, 06 March	07:30–18:00
Tuesday, 07 March	07:30–18:00
Wednesday, 08 March	07:30–18:00
Thursday, 09 March	07:30–16:00

Career Zone

Exhibit Hall B1

Looking for a job? Or interested in exploring career options? The Career Zone connects employers and skilled job seekers from all areas of optical communications. Conference attendees are encouraged to visit the Career Zone and be prepared to discuss your future with representatives from the industry's leading companies.

Job Seekers Meet Participating Companies

Tuesday, 07 March	10:00–16:45
Wednesday, 08 March	10:00–16:30
Thursday, 09 March	10:00–15:45

Register Online at **ofcconference.org/careerzone** or visit the Career Zone to:

- Search job postings freely
- Post your résumés online confidentially
- Network and schedule interviews with employers/recruiters

Employers

Didn't sign up for the onsite Career Zone? It's not too late.

Participate online at ofcconference.org/careerzone to:

- Post jobs online
- Review résumés before, during or after the conference
- Create alerts to inform you of newly submitted résumés and openings

For more information, call +1 888.491.8833 or email careercenter@ofcconference.org.

OFC Conference App

Manage your conference experience by downloading the OFC Conference App to your smartphone or tablet. **Download the conference app one of three** ways:

- 1. Search for 'OFC Conference' in the Google Play or Apple App stores.
- 2. Go to ofcconference.org/app
- 3. Scan the QR code

Schedule

Search for conference presentations by day, topic, speaker or program type. Plan your schedule by setting bookmarks on programs of interest. Technical attendees can access technical papers within session descriptions.

Exhibit Hall

Search for exhibitors in alphabetical order and set bookmark reminders to stop by booths. Tap on the map icon within a description, and you'll find locations on the Exhibit Hall map. View a daily schedule of all activities occurring on the show floor.

Technical Digest Papers

Full technical registrants can navigate directly to the technical papers right from the OFC Conference App. Locate the session or talk in "Event Schedule" and click on the "Download PDF" link that appears in the description. IMPORTANT: You will need to log in with your registration email and password to access the technical papers. Access is limited to Full Conference attendees only.

Join the Conversation!

Get the latest updates from OFC via Twitter at @OFCConference. Use the hashtag #OFC23 and join in the conversation today!

........

Registration

Sponsored by

Lobby D

Hours:

07:30–19:00
07:30–17:30
07:00–18:00
07:30–17:00
07:30–15:00

Speaker Ready Room

Room 11

All speakers and presiders are required to report to the Speaker Ready Room at least 1 hour before their sessions begin. Computers will be available to review uploaded slides.

Speaker Ready Room Hours*

Sunday, 05 March	13:00–17:00
Monday, 06 March	07:00–18:00
Tuesday, 07 March	10:00–18:00
Wednesday, 08 March	07:00–18:00
Thursday, 09 March	07:00–15:30

*Market Watch and Network Operator Summit speakers should go directly to Exhibit Hall C in Expo Theater I (#5335) to upload their presentations.

Wireless Internet Access

OFC is pleased to provide free wireless Internet service throughout San Diego Convention Center for all attendees and exhibitors. The wireless internet can be used for checking email, downloading the Conference App, and downloading the OFC Technical Papers, etc.

- SSID: OFC
- Password: OFC2023

OFC Management advises you to write your		
name on all of your conference materials		
(Conference Program, Buyers' Guide, and Short		
Course Notes). There is a cost for replacements.		

Make Our Community Your Community!

Join Now and Save 50% on Membership Dues!*

The IEEE Communications Society (IEEE ComSoc) is a global network of 30,000+ engineers, practitioners and academics working together to advance communications technology for the betterment of humanity.

Benefits of a ComSoc Membership:

- Networking with Communications Technology Professionals Around the World
- Generous Conference Discounts
- Free Subscriptions to High-quality Technology Publications
- Top-notch Training and Continuing Education Resources
- Exciting Volunteer Opportunities

Stop by the **ComSoc Booth #2939** Visit **www.comsoc.org/membership** for more information or to join.

*IEEE half-year membership dues pricing begins March 1. Professional members use promo code **OFCJOIN23** before March 31 to join ComSoc free.

IEEE COMSOC TRAINING OPTIONS

We offer high-quality communications technology training by world-class industry experts. Courses are taught live, online and cover a wider range of topics from optical to 5G. Members receive discounts on all courses.

Discounts are also available for group purchases of 8 or more course seats. Plus, you can arrange for customized training to match the unique needs of your team. Contact **Tara McNally** at **t.mcnally@comsoc.org** to learn more.

Visit **www.comsoc.org/training** to view the full course schedule and join our email list to receive alerts for upcoming courses.

Short Course Schedule

Sunday, 05 March 2023

08:30-12:30 (UTC - 08:00)

SC105: Modulation Formats and Receiver Concepts for Optical Transmission Systems Peter Winzer, Nubis Communications, USA; Vivian Chen, Nokia Bell Labs, USA

SC203: 400 Gb/s and Beyond Optical Communication Systems, Design and Design Tradeoffs Ezra Ip, NEC Labs, USA;

Chongjin Xie, Alibaba Group, USA

SC208: Optical Fiber Design for Telecommunications and Specialty Applications David J. DiGiovanni, OFS Labs, USA

SC328: Standards for High-Speed Optical Networking Tom Huber, Nokia, USA

SC395: Modeling and Simulation of Optical Transmitter and Receiver Components for Coherent Communications Harald Rohde, *Nokia, Germany*; Howard Wang, *Nokia, USA*

SC432: Hands on: Silicon Photonics Component Design & Fabrication

Lukas Chrostowski, University of British Columbia, Canada

SC443: Optical Amplifiers: From Fundamental Principles to Technology Trends

Peter Andrekson, Chalmers University of Technology, Sweden; Michael Vasilyev, University of Texas, Arlington, USA

SC461: High-capacity Data Center Interconnects for Cloud-scale Networking

Dirk van den Borne, Juniper Networks, Germany; Sander L. Jansen, ADVA Optical Networking, Germany; Mark Filer, Google, USA SC463: Optical Transport SDN: Architectures, Applications, and Actual Implementations Achim Autenrieth, ADVA Optical Networking SE, Germany; Jörg-Peter Elbers, ADVA Optical Networking SE, Germany

SC469: Hands-on: Laboratory Automation and Control Using Python (Beginner)

Jochen Schröder, Chalmers University of Technology, Sweden; Binbin Guan, Microsoft, USA; Roland Ryf, Nokia Bell Labs, USA

SC470: Secure Optical Communications

Andrew Shields, Toshiba Research Labs, UK; Helmut Grießer, ADVA Optical Networking, Germany

09:00-12:00 (UTC - 08:00)

SC177: High-speed Semiconductor Lasers and Modulators

John Bowers, University of California, Santa Barbara, USA

SC216: An Introduction to Optical Network Design and Planning

George Rouskas, North Carolina State University, USA

SC444: Optical Communication Technologies for 5G and F5G

Dr. Xiang Liu, Huawei Technologies, China

13:00-16:00 (UTC - 08:00)

SC447: The Life Cycle of an Optical Network: From Planning to Decommissioning Andrew Lord, *BT Exact, UK*

SC512: Modern Subsea Cable Systems NEW Mei Du, *Tata Communications, USA*

13:00-17:00 (UTC - 08:00)

SC267: Silicon Microphotonics: Technology Elements and the Roadmap to Implementation Lionel Kimerling, *MIT*, USA

SC384: Background Concepts of Optical Communication Systems

Alan Willner, University of Southern California, USA

SC514: FEC Techniques for Optical Communications NEW

Georg Böcherer, Huawei Technologies, Germany; Alex Graell i Amat, Chalmers University, Sweden

Monday, 06 March 2023

08:30-12:30 (UTC - 08:00)

SC102: WDM in Long-haul Transmission Systems Neal S. Bergano, *Retired*, USA

SC160: Microwave Photonics Jose Capmany, Polytechnic University of Valencia,

Spain

SC341: Sub-carrier Modulation and Superchannels for Terabit-class DWDM Transceivers

Sander L. Jansen, ADVA Optical Networking, Germany; Dirk van den Borne, Juniper Networks, Germany

SC369: Test and Measurement for Signals with Complex Optical Modulation

Fabio Pittala and Michael Koenigsmann, Keysight, Germany

SC433: Introduction to Photodetectors and Optical Receivers

Andreas Beling, University of Virginia, USA

SC448: Evolving Software Defined Optical Network: Architecture and Design Principles Ramon Casellas, *CTTC, Spain*

SC452: FPGA Prototyping for Optical Subsystems Noriaki Kaneda, *nEye systems Inc, USA*; Robert Elschner, *Fraunhofer HHI, Germany*

SC453A: Hands-on: Fiber Optic Handling, Measurements, and Component Testing Steve Baldo, *Seikoh Giken*, USA; Chris Heisler, *OptoTest Corporation*, USA; Steve Lane and Julien Maille, *Data-Pixel*, *France*

SC454: Hands on: Silicon Photonics Design -Circuits Wim Bogaerts, University of Ghent, Belgium

SC472: Hands-on: Controlling and Monitoring

Optical Network Equipment Ricard Vilalta, *CTTC, Spain*

SC473: Photonic Switching Systems David Neilson, *Nokia Bell Labs, USA*; Benjamin Lee, *NVIDIA, USA*

SC483: Machine Learning in Optical Networks

Massimo Tornatore, Politecnico di Milano, Italy; Darko Zibar, DTU FOTONIK, Denmark

SC487: Hands-On: Laboratory Automation and Control using Python (Advanced)

Jochen Schröder, *Chalmers University of Technology, Sweden*; Nicolas Fontaine, *Nokia Bell Labs, USA*; Binbin Guan, *Microsoft USA*

SC513: Data Center Short Links – Link Design, Modeling, Test and Measurements NEW

Petar Pepeljugoski, IBM Research, USA; Greg D. Le Cheminant, Keysight Technologies, USA

09:00-12:00 (UTC - 08:00)

SC359: Networking for Datacenters and Machine Learning

Hong Liu, Google, USA; Ryohei Urata, Google, USA

SC450: Design, Manufacturing, and Packaging of Opto-electronic Modules

Peter O'Brien, Tyndall National Institute, Ireland; Yoichi Taira, Keio University, Japan

SC465: Transmission Fiber and Cables

John Hedgpeth, Corning Optical Communications, USA

13:30-16:30 (UTC - 08:00)

SC114: Technologies and Applications for Passive Optical Networks (PONs) Yuanqiu Luo, *Futurewei*, USA

SC217: Applications of Radio-over-fiber Technologies Including Future 5G Networks Dalma Novak, Octane Wireless, USA SC408: Space Division Multiplexing for Optical Communication Systems and Networks Roland Ryf, *Nokia Bell Labs, USA*

SC459: Multimode Photonic Devices, Characterization and Applications Nicolas Fontaine, *Nokia Bell Labs, USA*

SC485: Advanced Fiber Access Networks Jun Shan Wey and Rajesh Yadav, Verizon, USA

13:30-17:30 (UTC - 08:00)

SC261: ROADM Technologies and Network Applications Thomas Strasser, *Molex, USA*

SC325: Highly Integrated Monolithic Photonic Integrated Circuits Chris Doerr, Doerr Consulting, LLC, USA

SC327: Modeling and Design of Long-haul Fiberoptic Communication Systems René-Jean Essiambre, Nokia Bell Labs, USA

SC347: Reliability and Qualification of Fiber-Optic Components, Modules and Equipment David R. Maack, David Maack Consulting, USA

SC357: Circuits and Equalization Methods for

Coherent and Direct Detection Optical Links Alexander Rylyakov, *Nokia, USA*; Sudip Shekhar, *University of British Columbia, Canada*

SC393: Digital Signal Processing for Coherent Optical Transceivers Chris Fludger, Infinera, Germany

SC431: Photonic Technologies in the Datacenter Clint Schow, University of California, USA

SC451: Optical Fiber Sensors Alexis Mendez, MCH Engineering USA; William Shroyer, SageRider, Inc., USA

SC453B : Hands-on: Fiber Optic Handling, Measurements, and Component Testing Steve Baldo, *Seikoh Giken, USA*, Chris Heisler, *OptoTest Corporation, USA*, Steve Lane and Julien Maille, *Data-Pixel, France*

Special Programming

Workshops

Sunday, 05 March, 13:00-15:30

S1A: Smart Pluggable Coherent Optics: Is it the End of Layered IP Over DWDM? Room: 6C

Organizers: Fatima Gunning, Tyndall National Institute, Ireland; Alejandra Beghelli, University College London, United Kingdom: Norman Swenson, Norman Swenson Consulting, USA; Dirk Van den Borne, Juniper, Germany

The traditional layered IP/DWDM network architecture – where the IP layer is housed in a separate infrastructure and operated/managed independently from the optical layer - has successfully accommodated the exponential growth of traffic for the past two decades. Coherent technology innovation has enabled network capacity growth while reducing the cost per bit in the optical layer. Network Processing Units (NPUs) in IP routers can today process many Terabits per ASIC. However, with Shannon's capacity limit and the end of Moore's law in sight, how will networks continue to evolve?

Smart pluggable optics may enable future growth while eliminating the redundant hardware, control plane and management layers, leading to increased efficiency in cost and energy, enabling true integrated IP over DWDM. However, will power and space constraints limit their optical performance and hence limit the use cases that smart pluggable modules can address? How can we effectively manage such smart pluggable modules? Traditionally, personnel responsible for Layer 3 operations have been unfamiliar with the network planning required for complex Layer 0/1 network configuration. Automation and software-defined network functionality can help with this, but are they enough? Is it possible to decouple advances in module transport capabilities from the development cycles of the host routers such that management software does not need to be rewritten or upgraded with every improvement in smart optics capabilities?

This workshop will explore the various aspects of introducing smart pluggable optics to new network architectures. In Part I, we will focus on use cases for integrated IP over DWDM versus traditional layered IP and transport solutions. In Part II, we will discuss the control and management challenges of an integrated IP over DWDM network architecture.

Speakers:

Heidi Adams, Nokia, Canada Ian Alderdice, Ciena, USA Oscar Gonzalez de Dios, Telefonica, Spain Steven Hand, Infinera, USA Tad Hofmeister, Google, USA Maxim Kuschnerov, Huawei, Germany Qingyun (Wendell) Liu, Verizon, USA Tim Pennell, Juniper Networks, USA Glenn Wellbrock, Verizon, USA

S1B: Quantum Dots – The Resurrection? Room: 6D

Organizers: Hai-Feng Liu, HG Genuine Optics Tech Co., Ltd, China; Martin Schell, Fraunhofer HHI, Germany; Tomoyuki Akiyama, Fujitsu, Japan

After more than 30 years of research and more than ten years since the first field deployments, quantum dot (QD) based lasers and semiconductor optical amplifiers (SOAs) have recently begun generating strong interest. QDs offer unique properties and additional degrees of freedom in design compared to traditional quantum wells. They are being explored for use in various applications and monolithic integration into silicon photonics manufacturing platforms. Is this resurgence based on the improved quality of the quantum dots or fundamentally new properties? Is isolator-free on-chip silicon integration the "killer app"? Is this success transferable back to III/V substrates like InP or GaAs? Where further can quantum dots go in performance? Will CdSe, ZSe, or other colloidal quantum dots play a role?

Speakers:

Namyoung Anh, Los Alamos National Laboratory, USA Yasuhiko Arakawa, Tokyo University, Japan Alexey Kovsh, Alfalume, USA Alan Y Liu, Quintessent, USA Huiyun Liu, University College London, UK Martin Moehrle, Fraunhofer HHI, Germany Johann Peter Reithmaier, University of Kassel, Germany Stephan Reitzenstein, Technical University of Berlin, Germany Mitsuru Sugawara, QD Laser, Japan Maksym Sych, Aegig, UK

S1C: Is Optical Access in Good Shape for the Future? Room: 6F

Organizers: Dora Van Veen, Nokia Corporation, USA; Mu Xu, CabelLabs, USA; Naveena Genay, Orange Labs Network, France; Tetsuya Kawanishi, Waseda University, USA

Recently the remote work/entertainment situation enforced by the outbreak of COVID-19 pandemic has shown the importance of upgrading the access network to enable needed services.

In this workshop, we will discuss the status of optical access, how optical access will look in the future, and if we are in good shape.

Copper access is being upgraded to optical access because of increasing demand for more data rate for super-broadband services with minimum latency for fixed networks' applications for residential and business users that have evolved, like gaming, holograms, AR/VR, Industry 4.0, live sport/music viewing, etc.

In addition to the residential and business use cases, another use case that will shape future optical access is mobile backhauling. This use case requires optical links that are capable of high data rates. Mobile users' high data rates and applications have evolved, meaning convergence of fixed and mobile services, the use of small cells, sensors, IoT, more flexibility, and strict

requirements for latency are needed. But what data rate do we need for 5G, 20 Gb/s per user? Do we need a peak rate over 100 Gb/s by 2030 for 6G?

We will consider energy efficiency, low carbon emission networks, and resilient networks (lifeline, battery, etc.) for future access. Optical networks are also expected to assist with societal requirements (fire assistance, sensors for agriculture, water level monitoring, climate, etc.) to support the Sustainable Development Goals (SDGs) by the United Nations.

To enable all the emerging use cases for optical access, a cost-effective symmetrical data rate of 100 Gb/s and beyond will be needed. In addition, new optical access standards, and what comes after the 25G and 50G-PON standards? Topics for discussion include IM/DD versus coherent, introduction of flex-ibility, and point-to-point versus point-to multipoint architectures. Will optical access standards move forward for all types of architectures? Will cost-effective coherent access be feasible?

Speakers:

Pham Tien Dat, NICT, Japan Saifuddin Faruk, University of Cambridge, UK Roberto Gaudino, Politecnico di Torino, Italy Ed Harstead, Nokia, Germany Paulo Monteiro, University of Averio, Portugal Derek Nesset, Huawei, Germany Kazuki Tanaka, KDDI Labs, Japan JunShan Wey, Verison, USA

S1D: Will Optics Have a Role to Play in Scaling Out Future Quantum Computing Architectures? (Part 1) Room: 6F

Organizers: Mekena Metcalf, Lawrence Berkley, USA; Eleni Diamanti, Universite Pierre et Marie Curie, France; Daniel Kilper, Trinity College Dublin, Ireland; Fotini Karinou, Microsoft Research Ltd, UK

Scaling quantum computing architectures is trending towards interconnected quantum processing units. For several platforms that require increasingly larger dilution refrigerators, communication between the modular quantum chips based on electrical/RF connections is a limitation due to the limited thermal load capacity the refrigerator can support. Other platforms expected to operate at higher temperatures would eventually face similar challenges. Optical interconnects are a potential answer to this scaling challenge to enable multi-chip communication. Such topologies would require thr conversion of qubits to optical wavelengths for some platforms and, more generally, transmission over a networked quantum computing architecture, i.e., notionally a "quantum data center."

Further, control of quantum computers necessitates a hybrid computing framework with both classical and quantum resources. In the first session, this workshop will encapsulate industry strategies for scaling quantum computing for various qubit technologies with classical control frameworks. The secondary session will cover the technologies and challenges facing quantum interconnects.

Session 1: This session will give an overview of different technologies/platforms the industry is pursuing to build a scalable quantum computing architecture. The Speakers will present their chosen technology, their vision toward a scalable computing platform, the challenges and the role of optics in their roadmap.

Session 2: This session will focus on different material platforms and devices as building blocks to enable various essential quantum system functionalities and their integration and packaging aspects to address system challenges induced by cryogenic environments.

Speakers:

Mercedes Gimeon-Segovia, VP System Architecture, PsiQuantum, USA Jungsang Kim, Co-Founder and Chief Technology Officer, IonQ Inc., USA Jason Orcutt, Principal Research Scientist, IBM Quantum, USA Richard Rouse, Microsoft, USA

S1E: Is It Really Game Over for the Quest to Approach Fiber Capacity Limits? Room: 7AB

Organizers: Gabriele Liga, Eindoven University of Technology, Netherlands; David Millar, Infinera, USA; Sergejs Makovejs, Corning, USA

After a decade of intense research and animated discussions around new approaches to increase the spectral efficiency (SE) of single-mode optical fiber transmission systems, we now see a significant slowdown in achievable SE gains as improvements become more challenging and costly. Therefore, the question of improving system SE appears to be beyond the scope of just modem improvements for the first time in many years. As a result, the balance between optical transmission power, SE gains, and investment cost needed to develop more advanced solutions is ever so harder to strike. Yet, no one knows with absolute certainty how much fiber capacity gain can be achieved in the coming years and with what level of implementation complexity.

This workshop will address a fundamental question: is it still worth trying to squeeze more SE out of optical fiber transmission systems? And if not, what are the most attractive alternative options to keep up with the current network capacity demand? Other questions to discuss in this workshop will include the following:

- Increasing number of spatial paths (more fibers per cables, new fiber designs, etc.) is promising, but is it the only way forward?
- Is it worth realizing the remaining SE gains, and which tools should we use? Are ultra-wide bandwidth solutions also valid contenders?
- What is the practical limit on bit-rate per wavelength (1.6Tb/s, 3.2Tb/s, etc.)? Are there any options to overcome this limit?
- Pluggable transceivers have somewhat reduced performance with significantly reduced power and size. Will they enable the next wave of capacity growth throughout the network?

 How much network capacity growth do we need in different parts of the networks (today and in the future)? Should we think about network capacity vs. p-t-p route capacity?

Speakers:

Cristian Antonelli, UnivAQ, Italy Vahid Aref, Nokia, Canada John Downie, Corning, USA Takemi Hasegawa, Sumitomo Electric, Japan Kishore Kota, Marvell, USA Rob Maher, Infinera, USA Eduardco Mateo, NEC, Japan Jeff Rahn, Meta, USA Massimilliano Salsi, SSSUP, Italy Marco Secondini, Scuola Superiore Sant'Anna, Italy Glenn Wellbrock, Verison, USA Metodi Yankov, DTU, Denmark

S1F: Where are the Boundaries Between IM-DD and Coherent?

Room: 8

Organizers: Clint Schow, Univ. of California, Santa Barbara, USA; Di Che, Nokia Bell Labs, USA; Sam Palermo, Texas A&M University, USA; Paola Parolari, Politecnico di Milano, Italy

Despite the continuous debate between IM-DD and Coherent, it is an irresistible trend that Coherent has gradually encroached the market share of IM-DD. The extensive deployment of 400ZR over the past few years has marked a big success of Coherent to singlespan transmissions like metro/datacenter inter-connects. Currently, academia and industry are actively developing next-generation coherent solutions targeting even shorter distances such as <10km datacenter intra-connects and optical access networks. Besides the advances of DSP/Photonic integration, a hotly pursued pathway to accelerate the expansion of Coherent is Coherent Lite, aiming to simplify or even remove the power-hungry DSP by using lower symbol rate, simpler modulation format, and specially designed analog electronic or optical subsystems.

Though the coherent camp has the ambition to rule the world, the IM-DD camp believes they'll hold their last stand where the parallel optics solve all the problems and Coherent makes no sense. The question is whether such a stand exists, and if so, where is the eventual boundary between IM-DD and Coherent? The boundary can be characterized by various metrics like data rate, distance, power consumption and transceiver cost, and may be closely related to the application drivers. This workshop will discuss such boundaries and address typical questions like:

- Will Coherent Lite find its position in the competition between IM-DD and Coherent?
- Is there a practical technique for an all-analog coherent system to avoid the ADC and DSP?
- Will there be a common and interoperable implementation for Coherent like 400ZR for shorter-distance applications, or will the solutions be diversified?
- Will the local oscillator wavelength management kill the application of Coherent to ultrashort-reach uncooled applications?
- Is it worth sending a remote light through a separate link for self-homodyne coherent detection?
- Can coherent access really meet the end users' stringent power/cost limit, and if so, how far we're away from that?

This workshop will invite speakers from academia, system and module vendors, datacenter and access operators to provide a diversity of perspectives.

Speakers:

Hector Andrade, Univ. of California, Santa Barbara, USA Matt Sysak, Ayar Labs, USA Tao Gui, Huawei, China Zhensheng Jia, Cable Labs, USA Hong Liu, Google, USA Radha Nagarajan, Marvell, USA Fabienne Saliou, Orange Labs, France Seb J. Savory, University of Cambridge, UK Yawei Yin, Microsoft, USA Hongbin Zhang, Cisco, USA

Sunday, 06 March, 16:00–18:30

S2A: Revolutionary vs. Evolutionary SDM Fibers: Extra Gain at Extra Complexity Room: 6C

Organizers: Tetsuya Hayashi, Sumitomo Electric Industries Ltd , Japan; Inna Kozmina, Corning, USA; Pierre Sillard, Prysmian Group, France; Benyuan Zhu, OFS Laboratories, USA

Rising network traffic, driven by consumer bandwidth demand, creates a capacity challenge for networks of all types. The search for scalable capacity has become a driving force in network systems. Space Division Multiplexing (SDM) is a viable approach as it increases the relative core density in a given system. In data center applications, it could solve practical installation problems of very large fiber counts in data center interconnect (DCI) links. In a submarine, it offers a path towards 1-5 Pb/s subsea cable capacity. The latter presents the ultimate challenge due to high-reliability requirements and power-limited cable designs on top of the high-capacity transmission. The debate will therefore focus on which technology will emerge to meet challenging 5 Pbps cable capacity targets in a submarine. Scalability, ecosystem readiness, compatibility with incumbent systems, and mechanical robustness are among the factors to be addressed for two leading solutions: multicore (MCF) and reduced geometry (Cladding or Coating) fibers

Speakers:

Mattia Cantono, Google, USA Olivier Courtois, Alcatel Submarine Networks, France Hans Damdgaard, OFS, Denmark Lidia Galdino, Corning, UK Stephen Grubb, Meta, USA Takemi Hasegawa, Sumitomo Electric, Japan Takanori Inoue, NEC, Japan Victor Kopp, Chiral Photonics, USA Alexei Pilipetskii, Subcom, USA Shigehiro Takasaka, Furukawa, Japan

S2B: Will Machine Learning be the Killer **Application for Optical Networks in Data** Centres Room: 6D

Organizers: Georgios Zervas, University College London, UK; Hitesh Ballani, Microsoft, USA; Manya Ghobhadi, MIT, USA

Machine learning models increase x10 every 18 months. Custom processors (TPUs, NPUs, xPUs) used for ML tasks support significantly higher I/O bandwidth compared to CPUs. However, the scalability and training time significantly depends on network performance. Current electronic multi-layer networks, due to over-subscription and large network diameter, lead to significant overheads and could limit the scale and efficiency of the system and ML applications. This workshop will explore methods used to scale models (data/model/hybrid parallelism) across hundreds and thousands of processing units, discuss existing network solutions and explore the potential and challenges of optical networks. Both current and future technologies will be presented and explored. Some of the questions that we aim to answer include but are not limited to include:

- Can electronic packet switching and traditional pluggable transceivers sustain the performance and power consumption demanded by the rapid growth of ML models?
- What are the requirements for broad adoption of fast all-optical switching and networking?
- Will optical networks change how we design distributed deep learning training systems and processes?

Part 1. Session on methods and current systems to support large-scale ML models.

Part 2. Potential and challenges of optical networks for ML systems.

Speakers:

Larry Dennison, NVIDIA, USA Alessandro Ottino, University College London, UK Josh Shalf, Lawrence Berkley National Laboratory, USA Sergey Shumarayev, Intel Corporation, USA

S2C: Perennial Bandwidth at Home: LiFi or FiWi? Room: 6E

Organizers: Bernhard Schrenk, Austrian Institute of Technology, Austria; Eduward Tangdiongga, Eindhoven University of Technology, Netherlands; Chi-Wai Chow, National Chiao Tung University, Taiwan

With access to fiber broadband, the user experience is strongly linked to home network performance. Towards this direction, Fiber-to-the-Room (FTTR) is now being investigated as a perennial deep-fiber infrastructure within ITU-T SG15 and ETSI F5G. FTTR poses a lot of questions concerning its opportunities. It also positions wireless in-house access in a new context: FTTR as an extender for WiFi6 promises Gbps connectivity in a quasi-interference-free environment, with considerable potential for wireless bandwidth upgrades when moving to (sub-)mm-wave technology readily maturing through Beyond-5G efforts. Will FiWi deployment within the premises cannibalize efforts to make LiFi a commodity? Are there still unmet requirements that can only be addressed through LiFi? Will LiFi co-exist or rather cease to exist? The workshop aims to address these pressing questions by bringing together speakers from academia and industry to discuss the deployment aspects of future home networks backed by FTTR technology and the roles of light- and radio-based wireless access.

Speakers:

Benjamin Azoulay, Oledcomm, France Rene Bonk, Nokia Bell Labs, Germany Philippe Chanclou, Orange Labs, France Steve Hranilovic, McMaster University, Canada Anthony Ng'oma, Corning, USA Nikola Serafimovski, pureLiFi, UK

S2D: Will Optics Have a Role to Play in Scaling Out Future Quantum Computing Architectures? (Part 2) Room: 6F

Organizers: Mekena Metcalf, Lawrence Berkley, USA; Eleni Diamanti, Universite Pierre et Marie Curie, France; Daniel Kilper, Trinity College Dublin, Ireland; Fotini Karinou, Microsoft Research Ltd, UK

Scaling quantum computing architectures is trending towards interconnected quantum processing units. For several platforms that require increasingly larger dilution refrigerators, communication between the modular quantum chips based on electrical/RF connections is a limitation due to the limited thermal load capacity the refrigerator can support. Other platforms expected to operate at higher temperatures would eventually face similar challenges. Optical interconnects are a potential answer to this scaling challenge to enable multi-chip communication. Such topologies would require thr conversion of gubits to optical wavelengths for some platforms and, more generally, transmission over a networked quantum computing architecture, i.e., notionally a "quantum data center."

Further, control of quantum computers necessitates a hybrid computing framework with both classical and quantum resources. In the first session, this workshop will encapsulate industry strategies for scaling quantum computing for various gubit technologies with classical control frameworks. The secondary session will cover the technologies and challenges facing quantum interconnects.

Session 1: This session will give an overview of different technologies/platforms the industry is pursuing to build a scalable quantum computing architecture. The Speakers will present their chosen technology, their vision toward a scalable computing platform, the challenges and the role of optics in their roadmap.

Session 2: This session will focus on different material platforms and devices as building blocks to enable various essential quantum system functionalities and their integration and packaging aspects to address system challenges induced by cryogenic environments.

Speakers:

Peter O'Brien, Tyndall National Institute, Ireland John Bowers, University of California, Santa Barbara, USA

Simon Gröblacher, QPhoX, Netherlands Pri Narang, University of California, Los Angeles, USA Jelena Vuckovic, Stanford University, USA

S2E: Does Optics Have a Role in Space? *Room: 7AB*

Organizers: Morio Toyoshima, National Institute of Information & Comm Tech, Japan; Murat Yuksel, University of Central Florida, USA; Eleni Diamanti, Universite Pierre et Marie Curie, France

Optical Wireless Communication (OWC), also called free-space optical communication, has recently evolved in many significant ways and is now employed in a wide range of applications extending to space. Long-distance, high-data-rate communication in space is becoming increasingly important to support science data transfer, telemetry, remote monitoring, and Internet connectivity. As a result, there is a trend in space communication to transition from radio frequency-based links to links using optical beams. Key motivations are an unregulated spectrum, smaller size/weight, lower power consumption per bit, larger bandwidth, and significantly smaller beam diffraction, resulting in much smaller link loss and, thus, higher capacity. The promising OWC applications in space will include Low Earth Orbit satellite constellations and High-Altitude Platform Stations with Optical Inter-Satellite Links (OISLs), inter-satellite mesh networks, low latency networking, and integration of satellites and 5G-and-beyond. In addition, quantum technologies attract great interest for their potential applications in computing, sensing, and communications. Satellite-based quantum communications are interesting in this context for linking securely quantum devices to provide groundbreaking services leveraging space networks at a global scale. Several challenges need to be overcome to make future applications based on space optical links a reality. The workshop will discuss the gigabit-per-second speed communication, the pointing-and-acquisitiontuning of OISLs at extremely high orbital speeds, the

dynamic network routing, and the economic viability for OWC in space as well as the novel and secure space network concept based on optical technologies for satellite quantum information networks.

Speakers:

Guray Acar, European Space Agency, Netherlands Mohammed-Slim Alouini, KAUST, Saudi Arabia Baris Erkmen, Hedron, USA Bryan S. Robinson, MIT Lincoln Lab, USA Mathias van den Bossche, Thales Alenia Space, France Juan Yin, University of Science and Technology of

Juan Yin, University of Science and Technology of China, China

S2F: Slow and Wide Versus Fast and Narrow: How Do We Make our Datacenters Green? Room: 8

Organizers: Trey Greer, NVIDIA, USA; Norm Swenson, Norman Swenson Consulting, USA; Xian Zhou, University of Science & Technology Beijing, China

There are different approaches to improving energy efficiency in and between data centers. We can continue to press toward higher baud rates and higher bits per symbol or use multiplexing techniques over optical wavelength, subcarrier frequency, and spatial/ fiber cores at lower baud rates. Which approach results in the best efficiency in terms of overall power consumption for the end-to-end system? It should include the power consumption of electrical interconnect, light generation, detection, amplification, signal processing, SERDES, and FEC. This workshop will address this topic in two sessions, within the data center (chip to chip) and between data centers.

Short Reach, <100 meters

The first session will deal with short-reach interconnect within a rack or between racks. Energy per bit is vital in these short optical interconnects.

• In the context of the bandwidth needed for 100 Tbps switches, where is the sweet spot in the battle between high channel bit rates vs. high fiber counts and channels per fiber?

- In lieu of higher channel data rates, what's the best way to increase the number of channels per fiber core or fiber cores around the host ASIC?
- On the host ASIC side, can we save power with the wider and slower electrical interfaces made possible with co-packaged optics?

Long Reach, up to 10km

The second session will look at communications between data centers.

- Which technologies and multiplexing techniques promise the most energy efficiency to achieve these distances? Is it intensity modulation/direct detection on multiple lanes, coherent subcarrier multiplexing, simplified coherent, or something else?
- What's the role of DSP in a power-efficient transponder? Does DSP actually result in net power savings?
- What key technologies must be demonstrated to realize these energy-efficient techniques in practical product offerings?

Speakers:

Keren Bergmen, Columbia University, USA Arash Farhood, Marvell, USA Joe Kahn, Stanford University, USA Dan Kuchta, IBM, USA Di Liang, Alibaba, USA Karl Muth, Broadcom, USA Sunil Priyadarshi, Intel, USA Dave Welch, Infinera, USA

Hack Your Research! Tools and Tricks for Today's Telecommunications Techies (formerly Lab Automation Hackathon)

Sunday, 05 March, 19:00–21:00 *Room: 17*

Organizers: Henrique Buglia, University College London, UK; Marco Eppenberger, PsiQuantum, USA; Menno van den Hout, Eindhoven University of Technology, Netherlands; Vincent van Vliet, Eindhoven University of Technology, Netherlands

Advisory Committee: Nicolas Fontaine, Nokia Bell Labs, USA; Binbin Guan, Microsoft, USA; Roland Ryf, Nokia Bell Labs, USA; Jochen Schroeder, Chalmers University of Technology, Sweden

Come and learn the most powerful techniques expert researchers and professionals use to enhance productivity and make life easier. Join us and take this chance to upgrade your work methods and discuss while enjoying lots of food and drinks in an informal, relaxed, and fun way.

Our everyday research is most fun and productive when we concentrate on creative problem-solving. Good news: tools are available for almost all other tasks to make your engineering life easier. Many software packages written by the large community allow you to quickly and easily automate menial tasks, build graphical user interfaces, visualize data, and much more! This event aims to bring awareness of these packages by hosting multiple interactive demos of mostly free and open-source software built in easy-tolearn languages such as Python. The demos are set up around informal discussion tables with plenty of time for inspiring discussion and questions, alternated with lighting talks and videos showing the usage of these tools.

This event is an opportunity to learn how to tap into and use the available public resources and learn about the newest tools developed by Ph.D. students and researchers alike. From students to highly experienced experts, everybody is welcome to learn and share ways to boost their research. Benefit and learn from the trial-and-error of others and get a kickstart in productivity!

Symposia

Three symposia are scheduled for OFC 2023. Please refer to the abstract section or Conference App for full details.

Quantum Information and Optical Communication Networks: Emerging Research Areas, Challenges and Opportunities Monday, 06 March, 14:00–18:30

Room: 1AB

Organizers: Eleni Diamanti, CNRS, France; Fotini Karinou, Microsoft Research, UK; Dan Kilper, University of Dublin Trinity College, Ireland; Fabian Laudenbach, Xanadu Quantum Computing, Canada; Rui Lin, Chalmers, Sweden; Michael Vasilyev, University of Texas, USA; Rui Wang, University of Bristol, UK

Recent advances in guantum technologies are enabling new functionality in communication networks. Quantum key management system support is available as a feature on commercial optical transmission systems and quantum random number generators are attracting attention for use in a variety of applications. At the same time, research is accelerating on the development of networked quantum computing to both scale existing platforms and to provide internet-like capabilities, perhaps to form a guantum internet. In addition to QKD-related applications, a new body of activity is developing around entanglement distribution and routing. A race is on to develop a scalable and commercially viable quantum repeater for distributing entanglement and performing teleportation over long distances. Quantum sensor networks promise nonclassical sensitivity enhancements. All these developments open up a wide range of potential new research areas in optical devices, communications and networks, spanning both the near and long term.

Key questions that this symposium will address include:

• What are other applications of quantum networking beyond QKD?

- Is optical quantum networking considered broadly just another version of classical optical networking, i.e., same methods, just different constraints? What are the new research areas created by bringing quantum technologies into optical networking?
- What is the "quantum internet"? Are there bottlenecks to achieving quantum internet that are related to networking performance?
- How far are prepare-and-measure/trusted QKD networks from the quantum internet/quantum network needed for (distributed) quantum computing?
- What are the main quantum computing platforms and what role does photonics play?
- What scale can we expect the quantum networks to reach in the short/medium/long term?
- Are optical networks the best match for connecting distributed quantum computers?
- What changes are necessary for the optical infrastructure to support a quantum internet in terms of hardware and software?

This symposium will explore these questions and others in regard to emerging research areas with a focus on optical communication technologies. The first session will provide high level overviews of broad areas with introductory or survey level talks followed by a panel discussion. The second session will breakdown specific areas in shorter talks, concluded with a panel discussion.

Session I: Emerging Research Areas in Quantum for Optical Communications

This session will provide broad overviews of key emerging research areas, including topics such as quantum enhanced security technologies in optical transmission systems, wavelength conversion and quantum computer/memory interfaces, quantum repeater network architectures for multi-partite entanglement distribution and teleportation, and quantum sensor networks and distributed quantum applications. The panel will discuss the current state of the art and the key research challenges.

Session II: Examples of Photonic Research within Emerging Areas

This session will go into greater depth on specific research problems within the broad areas discussed in Session I. Talks will include areas such as measurement device independent quantum key distribution and novel security architectures, specific quantum memory technologies and architectures for quantum repeaters, quantum network routing algorithms, long baseline interferometry or similar quantum enhanced sensor networks, and error correction coding for quantum optical communications. The panel will discuss recent research advances in these areas and existing challenges.

Speakers

Prem Kumar, Northwestern University, USA Reza Nejabati, University of Bristol, UK Sophia Economou, Virginia Tech, USA Ulrik Andersen, Danmarks Tekniske Universitet, Denmark Matt Eichenfield, University of Arizona, USA Vladyslav Usenko, Palacký University Olomouc, Czech Republic Saikat Guha, University of Arizona, USA

The Crucial Role of Photonics in Achieving the UN Sustainability Development Goals: Learnings and Opportunities

Tuesday, 07 March, 14:00–18:30 *Room: 1AB*

Organizers: Fotini Karinou, Microsoft, UK; Yuanqiu Luo, Futurewei Technologies; Albert Rafel, British Telecommunications, UK; Luca Valcarenghi, Scuola Superiore Sant Anna de Pisa, Italy; Elaine Wong, University of Melbourne, Australia

The United Nation's 2030 Agenda for Sustainable Development is a shared blueprint for global peace and prosperity, for the planet and its people, now and into the future. Core to this agenda are 17 Sustainable Development Goals (SDGs) that form an urgent call for action by all countries. Ending poverty and other deprivations must go hand-in-hand with strategies that close the digital divide, improve health and education, reduce inequality, and eliminate greenhouse gas emissions. The role of photonics, e.g., when deployed around a smart city framework and in rural underserved communities, is crucial to meeting the UN SDGs in a timely manner. However, even with its critical role as the digital backbone of society, the infrastructure itself can become a significant sustainability burden. It is thus imperative that future optical communication systems and networks are integrated in the society ensuring environmental sustainability as they evolve.

This OFC 2023 symposium, as the first in a series of OFC symposia on this topic, will specifically aim to:(a) reflect on the smartcity predictions made by OFCity 2015 competition teams towards sustainability, and (b) discuss related recent R&D efforts and future opportunities towards achieving SDGs from data center network operators, telecom network operators, system and technology providers, and academia. Through the discussions, we aim to highlight crucial next steps for the OFC Community to focus on the next years.

Speakers

Kasandra Pilay, Council for Scientific and Industrial Research (CSIR), South Africa Marco Ruffini; University of Dublin Trinity College, Ireland Yosuke Aragane, NTT, Japan Marcus Brunner, Huawei Technologies, China Naveena Genay, Orange Labs, France Thomas Karagiannis, Microsoft Research Cambridge, UK James (Dezhi) Zhang, China Telecom Corp Ltd, China

Beyond the Hype of Network Analytics: Use Cases, Feasibility, and Barriers Wednesday, 08 March,14:00–18:30

Room: 1AB

Organizers: Paolo Monti, Chalmers University of Technology, Sweden; Loukas Paraschis, IIEEE Communication Society, and Alphawave Semi, USA; Christine Tremblay, École de Technologie Supérieure, Canada; Elaine Wong, Melbourne School of Engineering, Australia

Network Analytics has become an increasingly important new area of innovation, most often led by the explosive demands in data center networks.

There are many exciting use cases which collectively promise to catalyze the paradigm shift from event (and human) driven networking to machine-driven and eventually autonomous networking based on self-adjusting or self-healing frameworks. There are also many equally exciting recent innovations in the related enabling technologies, most notably leveraging advancements in software automation, telemetry and provisioning with model driven abstractions combined with machine-learning and AI data analytics, towards network (often multilayer) optimization or proactive (even predictive) protection or restoration. For example, in a notable such network optimization, Google announced in August 2022 the use of SDN analytics and control and optical switches to replace its packet switching clos fabric spine and enable a much more scalable data center fabric. The OFC 2023 symposium, as the first in a series of OFC symposia on this topic, will specifically aim to identify, beyond the hype, the main optical network analytics use cases, their feasibility, barriers, and related R&D efforts. Invited speakers from data center operators, telecom network, system and technology providers, and academia will review the advancements and debate the important next steps.

Speakers

Vipul Deokar, Meta Platforms, USA Jian Kong, Microsoft Corp., USA Chongjin Xie, Alibaba Group, USA Anny Xijia Zheng, Google LLC, USA Andrew Lord, BT Exact, UK Darli Mello, UNICAMP, Brazil Jelena Pesic, Nokia Bell Labs, France Luis Velasco, Universitat Politecnica de Catalunya, Spain Bob Shine, Telescent Inc., USA Achim Autenrieth, ADVA, Germany Gauravdeep Shami, Ciena, USA

Panels

Ten panels are scheduled for OFC 2023. Please refer to the abstract section for full descriptions.

Towards Standardized PIC Testing: Challenges & Roadmaps

Date: Monday, 06 March, 08:00–10:00 Room: 7AB

Organizers: Patrick Lo, Advanced Micro Foundry, Singapore; Ashkan Seyedi, NVIDIA, USA; Wei Shi, Université Laval, Canada

Virtualization in Optical Networks: A Reality Check Date: Monday, 06 March, 08:00–10:00

Date: Monday, 06 March, 08:00–10:00 *Room: 6C*

Organizers: Ricardo Martinez, *CTTC, Spain*; Jamie Gaudette, *Microsoft, USA*; Annachiara Pagano, *Telecom Italia, Italy*

Connectivity for Beyond 5G: How Can Wireline and Wireless Optical Access Live Up to the Mobile Expectations? Date: Monday, 06 March, 10:30–12:30

Room: 7AB

Organizers: Jim Zou, ADVA, Germany; Albert Rafel, BT, UK; Baris Erkmen, HEDRON, USA; Frank Chang, Source Photonics, USA; Ke Wang, RMIT, Australia

Optical Fiber Sensing: Technology and Emerging Applications

Date: Monday, 06 March, 14:00–18:30 Room: 7AB

Organizers: Raja Ahmad, *Cisco Systems*, USA; Ting Wang, *NEC*, USA; Georg Rademacher, *NICT*, *Japan*; Mikael Mazur, *Nokia Bell Labs*, USA

1.6Tb/s+ Intra-DC Networks

Date: Monday, 06 March, 16:30–18:30 *Room: 6C*

Organizers: Stephan Pachnicke, Christian-Albrechts Universität zu Kiel, Germany; James Chien, Marvell Technology Inc., USA; Juthika Basak, Nokia, USA

LiDAR Systems and Technologies with Integrated Photonics

Date: Tuesday, 07 March, 14:00–16:00 Room: 7AB

Organizers: Long Chen, Cisco, USA; Sylvie Menezo, SCINTIL Photonics, France; Milos Popovic, Boston University, USA; Shilong Pan, Nanjing Univ Aeronautics & Astronautics, China

Advanced Packaging Technologies for Optical Modules

Date: Wednesday, 08 March, 08:00–10:00 Room: 6C

Organizers: Omer Khayam, *Google, USA*; Joris Van Campenhout, *IMEC, Belgium*; Juthika Basak, *Nokia, USA*; Molly Piels, *Juniper Networks, USA*

How Can We Start to Consistently and Quantitively Account for End-to End Power Consumption, Beginning with a Focus on 100 Meter Datacenter Links?

Date: Thursday, 09 March, 08:00–10:00 Room: 7AB

Organizers: Trey Greer, NVIDIA, USA; Clint Schow, Univ. of California, Santa Barbara, USA

Promises, Prospects and Challenges of VCSELs for Data Center Interconnects, Free-Space Communications, and Sensing Date: Thursday, 09 March, 08:00–10:00

Room: 6C

Organizers: Connie Chang-Hasnain, Berxel Photonics, China; Hai-Feng Liu, HG Genuine, China; Jim Lott, Technical University Berlin, Germany; Fotini Karinou, Microsoft Research Ltd, UK

Roadmap for Photonic AI Accelerators

Date: Thursday, 09 March, 14:00–16:00 Room: 7AB

Organizers: Volker Sorger, George Washington University, USA; Nikos Pleros, Aristotle University of Thessaloniki, Greece; Xian Xiao, Hewlett Packard Labs, USA; Glenn Bartolini, Coherent Corp, USA

Special Sessions

Ultra-Stable Frequency Sources and their Future Applications in Telecom Monday, 06 March, 08:00–10:00 *Room: 1AB*

Organizers: Dan Blumenthal, University of Calfornia, Santa Barbara, USA; Nick Fontaine, Nokia Bell Labs, USA; Radan Slavik, University of Southampton, UK

Optical fiber communications have resulted in commodity technologies benefiting other disciplines, including optical fiber and other components. Now, the outcomes of these other disciplines, in turn, can benefit fiber communications. An important example is time and frequency metrology and the development of the Optical Frequency Combs used to transfer signals over optical fibers (e.g., to compare national clocks at different National Metrology Institutes). Other examples include self-referenced ultra-stable optical and microwave signals for atomic clocks, ultra-narrow-linewidth frequency stabilized lasers, and quantum computing and sensing technologies. These technologies are now finding importance and application that feedback to fiber communications with optical networks needing more accurate time and frequency (e.g., for emerging 5G, distributed database synchronization), and using the existing telecom data carrying fiber base as a distributed precision sensor providing additional services such as Earthquake detection.

The Objective of the Special Session is to bring together researchers from the distinct disciplines of fiber communications, environmental sensing, precision metrology and spectroscopy, atomic clocks and stabilized lasers, and quantum sensing to bridge communications between these different areas and explore common research grounds and solutions. For example, measurement sensitivity using undersea cables is greatly improved using sources with high frequency and phase stability developed by the metrology community. We aim to promote an understanding of the requirements of ultrastable frequency sources in telecom, including portability and the benefits of photonic integration, and to discuss the current state-of-the-art performance. Further, we hope to develop connections in the telecom community that has access to terrestrial and transoceanic fibers with

those who develop state-of-the-art photonic sources and precision optical techniques with those who have expertise in environmental sensing and precision frequency and phase transfer. Finally, we aim to understand how emerging telecom fields, such as quantum systems, could benefit from precision frequency metrology and atomic timing developments. The session will also touch upon frequency references in applications such as space communications, wireless communications, atmospheric sensing, time transfer, geodetic sensing, and synchronization of large-scale experiments.

Speakers

Christopher Hilweg, Universitat Wien, Austria Giuseppe Marra, National Physical Laboratory, UK Frank Quinlan, National Inst. of Standards & Technology, USA Mark Saffman, University of Wisconsin, USA

High Performance Networks for Future Data Center and Computing Applications Monday, 06 March, 10:30–12:30

Room: 1AB

Organizers: Fotini Karinou, *Microsoft, UK;* Laurent Schares, *IBM TJ Watson Research Center, USA;* Chongjin Xie, *Alibaba, USA*

Data center workloads are continuously growing due to various emerging applications calling for higher bandwidth, lower latency, and more power-efficient networks. Machine Learning (ML) workloads, in particular, grow exponentially in size every year, and training them requires clusters of thousands of interconnected accelerators with Tbps-scale I/O bandwidth per node today. This new hardware needed to serve emerging applications will require innovation in designing and building networks that can scale Al supercomputers without exploding the overall power consumption and cost. This session will discuss emerging trends, including, for example, (1) composable systems with disaggregated resources (GPUs, CPUs, storage/memory) being co-located as a pool that is accessed via a local network and (2) reconfigurable network topologies to provision bandwidth on demand. It will focus on the challenges and opportunities for photonics and will try to address some of the following questions:

- Will optics penetrate composable systems or the accelerator-to-accelerator space?
- Reconfigurable network topologies what role will they play?
- Ethernet: will it continue to be the driving design paradigm in the AI era?
- CXL or proprietary interconnects: what protocol will dominate the chip-scale fabrics?

Speakers

Rui Wang, Google LLC, USA Manya Ghobadi, Massachusetts Institute of Technology, USA Larry Dennison, NVIDIA, USA Binzhang Fu, Alibaba Cloud, China Ram Huggahalli, Microsoft Azure, USA

Photonics for Visible Wavelengths

Wednesday, 08 March, 08:00–16:00 *Room: 2*

Organizers: Cheryl Agaskar, MIT Lincoln Lab, USA; Chi-Wai Chow, National Yang Ming Chiao Tung University, Taiwan; Fotini Karinou, Microsoft Research Ltd, UK

David Marpaung, University of Twente, Netherlands

Visible wavelengths are getting increasing attention due to their usefulness for communication, quantum, and sensing applications. In communication, blue-green wavelengths can be used for underwater comm, while LiFi systems can work across the visible spectrum. Visible wavelengths are often necessary when probing physical systems, such as the neutral atoms or ions used in quantum computing, optical clocks, color centers used in quantum sensors, or biological systems such as medical or chemical sensors. Visible light can also be useful for lidar and atmospheric sensing. Finally, nonlinear photonics and frequency combs often involve visible wavelengths.

This special session will begin by covering mature and emerging applications of visible light photonics. It will address why visible light is needed and the benefits of working in the more traditional telecommunication range. It will also explain how mature the current applications are and what systems, if any, are used in the field. It will then cover the state of the art of visible light devices such as lasers, detectors, and fibers, as well as foundry processes and packaging needs. This session will address the maturity of the available technologies and whether current or anticipated future performance is acceptable for application needs. And lastly, the session will also attempt to highlight the most significant outstanding needs in this emerging field.

Session I is scheduled from 08:00–10:00 Session II is scheduled from 14:00–16:00

Speakers

Brian Corbett, Tyndall National Institute, Ireland Michael Geiselmann, LIGENTEC, Switzerland Douwe Geuzebroek, LioniX, Netherlands Harald Haas, University of Strathclyde, UK Hao-Chung Kuo, National Yang Ming Chiao Tung University, Taiwan William Loh, MIT Lincoln Lab, USA Boon Ooi, King Abdullah Univ. of Science & Technology, Saudi Arabia Joyce Poon, Max-Planck-IInstitut für Mikrostrukturphysik, Germany Todd Stievater, U.S. Naval Research Laboratory, USA Jeremy Witzens, RWTH Aachen University, Germany

Demo Zone

Monday, 06 March, 14:00–16:15 *Room: 6A*

Organizers: Ben Puttnam, National Institute of Information and Communications Technology (NICT), Japan; Marco Ruffini, University of Dublin Trinity College, Ireland

Committee: Fatima Gunning, Tyndall National Institute, Ireland; Ezra Ip, NEC Laboratories America Inc., USA; Jelena Pesic, Nokia Bell Labs, France; Raul Muñoz, CTTC, Spain; Dora Van Veen, Nokia Bell Labs, USA

The Demo Zone features live demonstrations of research projects and proof-of-concept implementations in the space of optical communication devices, systems, and networks.

Please refer to the abstract section for full descriptions.

Rump Session: Is the Silicon Photonics Platform about to be Standardized, Diversified or Supplanted?

Tuesday, 07 March, 19:30–21:30 *Room: 6F*

Moderator: Daniel Kuchta, IBM TJ Watson Research Center, USA; Co-Moderator: Michael Hochberg, Luminous Computing, USA

As the required raw single wavelength data transmission rates now exceed 200 Gbps, the use of the all-Silicon transmitter is threatened by a coven of materials: Thin Film Lithium Niobate, Organic Polymers, Barium Titanate, Plasmonic metals, and of course, InP. Will Silicon Photonics follow the course of integrated circuits and bifurcate into the equivalent of CMOS (pure Si) and Bipolar (Si, SiGe, and everything else) variants? Can pure Si Silicon Photonics maintain commercial dominance? Or will InP finally take over? This year's rump session will bring together industry provocateurs representing these three competing views and pit them against each other and the audience in an arena containing beer and live lions (the VCSEL community)!

Open Networking Summit: Top to Bottom: Practical Approaches to Openness, Disaggregation, and Reaggregation in Optical Communication

Wednesday, 08 March, 16:30–18:30 *Room: 8*

Organizers: Yawei Yin, Microsoft, USA; Jim Zou, ADVA, Germany; Dan Pitt, Palo Alto Innovation Advisors, USA

As we look at the success of the "Open" and "Disaggregated" systems in data centers, it is not difficult to draw a few fundamental conclusions: #1, servers came easiest because of standardized processing units, whether it's x86-based CPU, GPU, or Arm processors, running in Linux-based white-box servers, which have become the norm for even the branded server vendors; #2, the standard interfaces that can connect servers together, i.e., the Ethernet-based NIC card and the BGP/TCP/IP protocol stack that enable the communication, and the appearance of Linux-based white-box switches have not yet resulted in their proliferation beyond the hyperscale realm because of the strength of incumbent brands and the challenges of integrating and supporting disaggregated components, and #3, the optical links, while disaggregated to the pluggable level with standardized interfaces, cannot match the density and scale of the computing world. Moreover, DSP algorithms are still being treated as "secret sauce," and advanced modulation schema is not connecting different light sources together. Finally, silicon photonics and III-V semiconductors remain silos not amenable to the integration density required for a wide-open market in co-packaged optics and the eye-popping applications in consumer, health, and civic technologies. In this session, we will paint a "coherent" portrait of advancing openness, manageable disaggregation, and heterogeneous integration and reaggregation in optical communication. We will look at the progress in open-source network operating systems, open-source coherent optical light sources, industry standards in DSP algorithms, and manufacturable heterogeneousintegration technologies. Join us to hear from and debate with the experts leading these innovations.

Speakers

Óscar González de Dios, Telefónica I+D, Spain Stephan Neidlinger, ADVA, Germany Guohan Lu, Microsoft, USA David Gomez, X-Celeprint, USA Tino Jaeger, X-FAB. Germany

Postdeadline Paper Presentations

Thursday, 09 March, 16:30–18:30 Rooms: 6C, 6D, 6E, 6F

Discover the best and most cutting-edge research in optical communications. The OFC 2023 Technical Program Committee has accepted a limited number of Postdeadline Papers for oral presentation. The purpose of Postdeadline Papers is to give participants the opportunity to hear new and significant material in rapidly advancing areas. Only those papers judged to be truly excellent and compelling in their timeliness were accepted.

Lists of accepted papers with their presentation times will be posted throughout the convention center, in the OFC Conference App and online on Tuesday, 07 March.

The 2023 Program Chairs are proud to introduce several new events at OFC 2023 to enhance attendee experience and create more opportunities for learning and networking.

Through these events, we aim to welcome new attendees to the conference, help students integrate and grow within the OFC community, Optica and the IEEE societies and to promote and celebrate inclusion and diversity throughout the conference.

We are grateful to the OFC Steering and Long-Range Planning Committees, Optica, IEEE Communications Society, and IEEE Photonics Society staff and the organizers of the various events for their support in bringing our vision to life.

Nick Fontaine, Fotini Karinou, Elaine Wong

Special Events

Optical Transmission Systems – Design and Simulation Workshop (Presented by the Optica Foundation & VPIphotonics)

Sunday, 05 March, 13:00–18:00 Room: 31A (Limited Registration. RSVP required to trooney@optica.org)

This workshop will show you how to conceptualize and evaluate optical transmission systems from a communication engineer's perspective by using professional simulation software. You will learn how to efficiently simulate optical transmission systems and automate the design and analysis of new technologies using VPIphotonics Design Suite. We will investigate transmission systems scenarios for applications ranging from data center interconnects to high-capacity core network links to optical satellite communication links. We will explore general system design concepts, demonstrate how to investigate the impact of performance-limiting effects, and assess how to mitigate or compensate for them.

Topics include:

- Professional simulation software design
 environment
- Intensity-modulated direct detection systems
- Digital coherent systems
- Free-space optical systems

This workshop targets students and early-career professionals who want to learn how to utilize a professional simulation and design environment for their engineering and research tasks in optical transmission systems. Basic knowledge of technologies, concepts, and methodologies of the various transmission systems is helpful.

This workshop includes a 4-hour session of lectures, guided labs, and independent work with 1-on-1 support. Attendees will be provided access to the software in a cloud-based environment using their own private laptops. Registration is limited to 35 seats to provide attendees with direct access to our team of experts, so reserve your seat today by contacting trooney@ optica.org.

OFC Mentor/Mentee Meet-Up

Monday, 06 March, 12:00–13:00 Room: 17 (Separate registration required. See ofcconference.org/special-events/ for details.)

Are you new to OFC, perhaps a student, a young professional, or even an experienced researcher, but have never been to OFC? Or are you looking for some advice in navigating through your research goals and ambition?

Join us at our mentor match event, where you can meet photonics experts and mentors who may advise you on how to steer through the conference, introduce you to people in the field, share some of their experiences, and find someone who shares a unique talent with you.

The Journal Review Process: All You Need to Know!

Monday, 06 March, 14:00–15:30 Room: 14B

Journal publications are critical for our industry. They are where new results, ideas and demonstrations are reported, after which they are permanently stored and made available for others to use in their own research and design work. This body of knowledge has been built up for the optical industry over many decades. This event will provide a behind-the-scenes look into the journal publications process and allow attendees with the opportunity to ask questions and interact with Editors and Reviewers of some of the highest impact factor Journals in the field of optical communications and networking. It will follow the trail of what happens once a new research paper is submitted to an IEEE or Optica journal.

The event will consist of informative presentations followed by roundtable discussions, hosted by people involved in the review and publication process, willing to answer questions and engage with you. Most importantly, for those interested to learn more, this event will provide guidance on how to get involved in the review process of the most prestigious journal publications in the field of optical telecommunications.

Welcome Address

Andrew Lord, Editor-in-Chief, Journal of Optical Communications and Networking, Sr. Manager of Optical Networks Research, BT, UK; Gabriella Bosco, Editor-in-Chief at IEEE/Optica Journal of Lightwave Technology, Full Professor at Politecnico di Torino, Italy

Overview of the Review Process

Kelly Cohen, Sr. Publisher, Optica Publishing Group, USA

Why be a Reviewer?

Peter Winzer, Former Editor-in-Chief Journal of Lightwave Technology, Founder, Nubis Communications, USA

Are Journals Really Just for Academia?

Sorin Tibuleac, JLT Associate Editor, Director, ADVA Optical Networking, USA

Birds of a Feather: Designing and Operating the Next Generation Optical Photonic Networks

Monday, 06 March, 16:30–18:30 *Room: 14B*

Starting in 2023, OFCnet brings a new opportunity to the exhibition to demonstrate products, concepts, solutions, research, and architectures in a live high-speed optical network connected to the leading research and education networks worldwide. This increased focus on designing and building the next generations of Optical Networks will expand exposure to connectivity, emerging technologies, Quantum Computer networks, programmability, and network software applications for big data applications. In this BOF, we propose a workshop series that solicits papers and demonstrator reports on all aspects of building networks out of components and using those networks for the whole range of commodities to extreme applications. Furthermore, we will solicit input on possible challenges for demonstrating novel new architectures, technologies, and implementations.

Student Party

Monday, 06 March, 19:00–21:00 Location: The Loft, Petco Park

New to OFC, the Student Party is an opportunity for students to meet and network in a fun and relaxed environment. Please be sure to bring a form of ID with you to the event.

Conversation with the Plenary Speakers

Tuesday, 07 March, 10:15–10:45 Theater III, Exhibit Hall

Join OFC General Chairs Ramon Castelles, Chris Cole and Ming-Jun Li for a conversation with Plenary Speakers, Patricia Obo-Nai, Jayshree Ullal and Wendell Weeks.

Optical Communications Technical Group Poster Pitch Competition

Tuesday, 07 March, 11:00–12:00 *Room 3*

You are invited to join the Optica Technical Group on Optical Communications for this fun and interactive session. Students and early career professionals will be sharing their latest research with us through short talks and videos. You will then have the chance to vote for the best poster pitch and network with colleagues over refreshments. Please RSVP at https:// forms.gle/ngK4UCFK7729QqU1A to let us know you will be attending.

Conference Reception

Tuesday, 07 March, 18:30–20:00 Ballroom 20

Enjoy food and drinks with your friends and colleagues during the conference reception. Tickets for this event are included with all full conference registrations. Additional tickets may be purchased at Registration for USD 85.

International Women's Day Breakfast

Wednesday, 08 March, 07:00–08:30 Room: 20A (Limited registration. See ofcconference. org/special-events/ for details.)

The 2023 United Nation International Women's Day theme is "DigitALL: Innovation and Technology for Gender Equity." In support of this, Program Chairs Fotini Karinou, *Microsoft Research Ltd, United Kingdom* & Elaine Wong, *Univ. of Melbourne, Australia,* invite you to join them Wednesday, 08 March at 07:00 for breakfast followed by a panel discussion to recognize and celebrate the contributions of women in optical fiber communications.

Panelists will discuss their personal career path and the women who have inspired them and explore the role women have played in innovation and in driving positive transformation in science, technology and engineering. Our panel will comprise thought leaders and innovators in science, engineering and technology.

The Art of Writing the Perfect OFC Paper

Wednesday, 08 March, 10:30–12:00 Room: 14B

Organizers: Georg Rademacher, National Inst. of Information & Comm Tech, Japan; Paolo Monti, Chalmers University of Technology, Sweden

Join OFC committee members, journal editors, and distinguished researchers for an interactive workshop on how to write a highly-scored OFC paper. We will discuss the qualities of great OFC submissions and the common reasons why papers are rejected from OFC. The workshop will kick off with a few short talks followed by smaller breakout/brainstorming sessions and end with some time for networking.

• 05 00 March 2022

IEEE/Optica Publishing Group Journal of Lightwave Technology 40th Anniversary Luncheon

Wednesday, 08 March, Room: 20A (Invitation Only)

The Journal of Lightwave Technology celebrates its 40th anniversary with a special luncheon at OFC 2023, recognizing the hard work and dedication of all the volunteers who have contributed to the success of the journal since its inception.

Since its founding in 1983, the Journal of Lightwave Technology has published leading research in optical waveguide technologies and their applications, from integrated photonics to optical networks. The journal's collection includes seventeen special issues featuring the most relevant work presented at the OFC conference.

Photonics Society of Chinese Heritage Workshop & Networking Social

Wednesday, 08 March, 17:00–19:30 *Room: 15AB*

Organizers: China International Optoelectronic Expo (CIOE), Infostone, and Optica

Data Center Technology at the Crossroads

Data center technology is entering a time of great change. After many years of headlong growth, the impetus for continued rapid progress is even stronger, but there are now also unprecedented new options for direction. This workshop will explore a few of the most impactful roadmap choices the industry will have to make in the next three to five years, such as data center coherent, direct-drive optics, CPO/NPO/ Chiplet, and Thin-film Lithium Niobate.

All are welcome to hear a select panel of industry experts present and answer questions on this year's hot topic. Networking dinner offsite will follow the event.

Rise and Shine Morning Run/Walk

Thursday, 09 March, 06:00–07:00 Hilton Bayfront, (Bottom of San Diego Convention Center stairs, front entrance)

Meet up for an early morning three-mile run or walk with fellow colleagues.

OFC Plenary Session

Tuesday, 07 March, 08:00-10:00 Ballroom 20

Harnessing Digitalization for **Effective Social Change**

Patricia Obo-Nai, Chief Executive Officer, Vodafone, Ghana

Digitalization is a potent driver of progress in the modern world, particularly in Africa. The increased use of mobile phones has given it the momentum it

needs across Africa. However, much more work is required. This talk will touch on what needs to be done to ensure that everyone, especially the most vulnerable, reaps the benefits of the global digital movement.

Patricia Obo-Nai is an experienced leader in Ghana's telecommunications industry. She was named CEO of Vodafone Ghana in April 2019, making her the first Ghanaian to hold that position in the country's 10 years of business.

Obo-Nai has a Bachelor of Science in Electrical and Electronic Engineering from Kwame Nkrumah University of Science and Technology (KNUST), an Executive MBA in Project Management from the University of Ghana Business School, and executive education from the Kellogg School of Management, London Business School, and INSEAD in France.

She is passionate about the future of young people and women in the digital age and is a vigorous advocate for STEM. She has advocated for youth and women on a variety of local and international platforms, including the UN General Assembly panel sessions.

The Road to Petascale Cloud Networking

Jayshree V. Ullal, President and Chief Executive Officer, Arista Networks, USA

As the future application demands and compute performance evolve, the network needs to adapt for exponential growth in traffic, con-

necting tens of thousands of processors with Petabits of bandwidth. As a pioneer in cloud networking, Arista has become synonymous with elastic scaling and programmable provisioning delivering modern data-driven platforms.

Arista believes Moore's law is alive and will enable next-generation 100-Terabit switching and multi-terabit optics. A networking and Silicon Valley veteran, Jayshree Ullal will discuss the trends, evolution, and impact of petascale and Al-driven networking technologies ahead.

Jayshree V. Ullal As President and CEO of Arista for over a decade, Ullal is responsible for Arista's business and thought leadership in cloud networking. She led the company to historic and successful IPO in June 2014 from zero to a multibillion-dollard business. Formerly Ullal was Senior Vice President at Cisco, responsible for a \$10B business in datacenter, switching and services. With more than 30 years of networking experience, she is the recipient of numerous awards including E&Y's "Entrepreneur of the Year" in 2015, Barron's "World's Best CEOs" in 2018 and one of Fortune's "Top 20 Business persons" in 2019.

Ullal holds a B.S. in Engineering (Electrical) and an M.S. degree in engineering management. She is a recipient of the SFSU and SCU Distinguished Alumni Awards in 2013 and 2016.

Capacity to Transform

Wendell P. Weeks, Chairman and Chief Executive Officer, Corning Incorporated, USA

Corning's Chairman and CEO, Wendell Weeks, will highlight the industry's growth drivers and breakthrough innovations in product and process, and the

importance of connecting the unconnected with glass thinner than a human hair. Mr. Weeks will also share how optical fiber, invented more than 50 years ago, is contributing to greener solutions - benefiting our shared and more sustainable future.

Wendell P. Weeks has served as Corning's chief executive officer since 2005 and as chairman of its board since 2007. He has been a member of the company's board of directors since 2000.

Weeks joined Corning in 1983, working in finance, before holding roles in business development, commercial, and general management.

In 1996, he became vice president and general manager of Corning's optical fiber business. In 2001, he was named president of the company's Optical Communications division, leading through dynamic market growth and the subsequent challenges of the telecommunications crash. Weeks became Corning's president and chief operating officer in 2002, helping oversee Corning's restructuring and return to profitability.

As CEO, he has played an instrumental role in several life-changing innovations, including the development of Corning® Gorilla® Glass. He has earned 33 U.S. patents.

Weeks is a graduate of Lehigh University and earned a Master of Business Administration from Harvard University as a Baker Scholar. He serves on the board of directors at Amazon.com Inc. and on the board of trustees for the Corning Museum of Glass and the Institute for Advanced Study. He is a member of the Liveris Academy Honorary Board.

OFC and Co-Sponsor Awards and Honors

Awards Ceremony and Luncheon

Tuesday, 07 March, 12:00–14:00 Ballroom 20A

Supported by CORNING

Join conference co-sponsors Optica (formerly OSA), IEEE Photonics Society, and IEEE Communications Society for a special luncheon to recognize award and honor recipients from each society. The event is open to all ticket-holders, but seating is limited. Tickets can be purchased for USD 45 at registration.

The following awards and recognitions will be presented at the Awards Ceremony and Luncheon.

2023 John Tyndall Award

First presented in 1987, this award recognizes outstanding contributions in any area of optical-fiber technology that have met the test of time and been of proven benefit to science, technology, or society. It is jointly presented by Optica and the IEEE Photonics Society and is funded by Corning, Incorporated.

Congratulations to this year's recipient, Ming-Jun Li, Corning Incorporated, USA

Optica 2023 Fellows

Recognizes Optica members who have served with distinction in the advancement of optics and photonics through distinguished contributions to education, research, engineering, business leadership, and society.

Congratulations to the following Fellows:

Kazi Abedin, CACI International, Inc., USA Anjali Agarwal, CACI | Technology Innovation and Labs, USA Antonella Bogoni, Sant'Anna School/CNIT, Italy Xi (Vivian) Chen, Nokia Bell Labs, USA John D. Downie, Corning Incorporated, USA Masayuki Fujita, Osaka University, Japan Gordon Keeler, Defense Advanced Research Projects Agency, USA Guixin Li, Southern University of Science and Technology, China

Yoshiaki Nakano, The University of Tokyo, Japan Hideyuki Nasu, Furukawa Electric Co., Ltd., Japan Jin-Wei Shi, National Central Univ, Taiwan Perry Ping Shum, Southern University of Science and Technology Shenzhen Guangdong, China Vijay Vusirikala, Google LLC, USA Jingyi Yu, ShanghaiTech University, China

IEEE Photonics Society 2023 Fellows

A distinction reserved for select IEEE members who have achieved extraordinary accomplishments. Fellows have contributed importantly to the advancement or application of engineering, science, and technology, bringing the realization of significant value to society.

Congratulations to the following Fellows:

Fabrizio Forghieri, Cisco Photonics, Italy Magnus Karlsson, Chalmers University of Technology, Sweden

Christina M Lim, University of Melbourne, Australia Yoshiaki Nakano, The University of Tokyo, Japan Boon S Ooi, King Abdullah University of Science and Technology, Saudi Arabia

Ping Shum, Southern University of Science and Technology Shenzhen Guangdong, China

IEEE Communications Society 2023 Fellows

Recognizes the extraordinary contributions and accomplishments of IEEE members. Fellows are honored for their outstanding technical, educational, and leadership achievements.

Congratulations to the following Fellows:

Andrew Lord, BT Group, UK Perry Ping Shum, Southern University of Science and Technology Shenzhen Guangdong, China Massimo Tornatore, Politecnico di Milano, Italy

IEEE/Optica Journal of Lightwave Technology Best Paper Award

Recognizes the top cited original papers published in JLT in 2020, as determined by a variety of citation metrics and databases. It is presented by the JLT Coordinating and Steering Committees.

Copies of the winning papers will be available at OFC and will be made open access in the IEEE Xplore Digital Library.

Congratulations to the authors of the following paper:

800G DSP ASIC Design Using Probabilistic Shaping and Digital Sub-Carrier Multiplexing by Han Sun¹, Mehdi Torbatian¹, Mehdi Karimi¹, Robert Maher², Sandy Thomson¹, Mohsen Tehrani¹, Yuliang Gao¹, Ales Kumpera¹, George Soliman¹, Aditya Kakkar¹, Mohammad Osman¹, Ziad A. El-Sahn¹, Clayton Doggart¹, Weikun Hou¹, Shailesh Sutarwala¹, Yuejian Wu¹, Mohammad Reza Chitgarha², Vikrant Lal², Huan-Shang Tsai², Scott Corzine², Jiaming Zhang², John Osenbach³, Sanketh Buggaveeti³, Zulfikar Morbi², Miguel Iglesias Olmedo², Irene Leung², Xian Xu², Parmijit Samra², Vince Dominic², Steve Sanders², Mehrdad Ziari², Antonio Napoli⁴, Bernhard Spinnler⁴, Kuang-Tsan Wu¹, Parthiban Kandappan², ¹Infinera Canada Inc., Ottawa, Canada; ²Infinera Corp., Sunnyvale, USA; ³Infinera Corp., Allentown, USA; ⁴Infinera Corp., Munich, Germany

IEEE Photonics Award

Established in 2002, the award is presented for, but not limited to: light-generation, transmission, deflection, amplification and detection, and the optical/ electro-optical componentry and instrumentation used to accomplish these functions. Recipients are selected by the Technical Field Awards Council of the IEEE Awards Board.

Congratulations to this year's recipient, Roel Baets, *Ghent University - IMEC, Belgium*

Wiley-IEEE Press Professional Book Award

Recognizes the authors of an outstanding monograph or professional book published by Wiley-IEEE Press during a three-year window prior to the year of the nomination. Books must cover a field relevant to the IEEE.

Congratulations to this year's recipients,

VCSEL Industry: Communication and Sensing by Babu Dayal Padullaparthi, VQuanta Private Limited, India; Jim Tatum, Dallas Quantum Devices, USA; Kenichi Iga, Tokyo Institute of Technology, Japan

Jane M. Simmons Memorial Speakership

Established in 2021 in honor of Jane M. Simmons' high impact contributions to optical network architecture, design, and planning, the speakership recognizes an invited speaker at OFC. The recognition is endowed by the Simmons Family. The OFC community is encouraged to contribute to the fund by visiting optica.org/donate.

Congratulations to this year's recipient, Hong Liu, *Google, USA*

The Corning Outstanding Student Paper Competition

Endowed through the Optica Foundation by Corning Incorporated, the paper competition recognizes innovation, research excellence, and presentation abilities in optical communications. All students submitting their papers during the regular "call for papers" process for OFC are eligible for the competition. Finalists present their work to the OFC Program and General Chairs in a private session before the conference.

Congratulations to this year's finalists:

Leonard Budd, ORC, UK Benjamin Crockett, INRS, Canada Keren Liu, Chalmers University of Technology, Sweden George Giamougiannis, Aristoteleio Panepistimio Thessalonikis, Greece Kyousuke Nakada, Kagawa University, Japan Christos Pappas, Aristotle University of Thessaloniki, Greece Apostolos Tsakyridis, Aristotle University of Thessaloniki, Greece

The Corning Women in Optical Communications Scholarship

Endowed through the Optica Foundation by Corning Incorporated, these scholarships recognize three outstanding women graduate students studying optical communications and networking.

Congratulations to this year's recipients:

Hannah Tomio, Massachusetts Institute of Technology, USA Xiaohui Xu, Purdue University, USA Wenting Yi, University College London, UK

The Tingye Li Innovation Prize

Presented to an early career professional who has demonstrated innovative research, the prize honors the global impact Tingye Li had on the field of optics and photonics. It is administered by the Optica Foundation, and endowed by Alliance Fiber Optic Products, Inc., AT&T, Optica, IEEE Photonics Society, IEEE Communications Society, Thorlabs, Inc, the Li Family, and supporters of the Tingye Li Memorial Fund.

Congratulations to this year's recipient, Benjamin Crockett, Institut National de la Recherche Scientifique (INRS), Canada

Activities on the Show Floor

The OFC 2023 Exhibition is the perfect place to build and maintain professional contacts and broaden your knowledge about the companies that lead our industry in product development and technological advances. Hundreds of exhibits showcase the entire continuum of the supply chain – from communications systems and equipment to network design and integration tools and components and devices. In addition, three exhibit hall theaters feature presentations by experts from major global brands and key industry organizations. Get high-level perspectives on hot topics like intra and inter data center connectivity, infrastructure, access networks, optical systems and components and standards and industry updates.

Learn about the state of the industry, emerging trends and recommended courses of action for how to tackle today's toughest business challenges.

Exhibition

Exhibit Halls B-G

Exhibit Hall Regulations

- All bags are subject to search.
- Neither photography nor videotaping is permitted in the exhibit hall without the express written consent of OFC 2023 Show Management. Non-compliance may result in the surrendering of film and removal from the hall.
- Children under 18 are not permitted in the exhibit hall during set-up and teardown.
- Children 12 and under must be accompanied by an adult at all times.
- Strollers are not allowed on the show floor at any time.
- Soliciting in the aisles or in any public spaces is not permitted.

- Distribution of literature is limited to exhibitors and must be done from within the confines of their booths.
- Smoking is not permitted inside the San Diego Convention Center. You are welcome to step outside the Convention Center to smoke in designated smoking areas only, but please be considerate of others when you do.
- Alcohol is not permitted in the exhibit hall during set-up and tear-down.

Exhibit Hall Coffee Breaks

The exhibit floor is the perfect place to build and maintain professional contacts, and these breaks provide ideal networking opportunities. Complimentary coffee will be served in the exhibit hall at these times:

	Exhibit Hours	Coffee Breaks
Tuesday, 07 March	10:00–17:00	10:00–10:30 16:00–16:30
Wednesday, 08 March	10:00–17:00	10:00–10:30 16:00–16:30
Thursday, 09 March	10:00–16:00	10:00–10:30

Elevated Coffee Break Station infinera Booth 4717

Sponsoring Society Exhibits

Exhibit Hall F

Catch up on the latest product and service offerings of the OFC sponsoring societies by visiting their booth or member lounge located in the back of Exhibit Hall F. **IEEE** is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. **Optica** is the leading professional association in optics and photonics, home to accomplished science, engineering, and business leaders from all over the world.

Suzanne R. Nagel Lounge Booth 2839

Named in honor of the first woman chair of OFC the Suzanne R. Nagel lounge is a dedicated, networking space offering attendees the opportunity to meet colleagues, explore new business opportunities and have complementary expert headshots taken. Attendees can participate in small professional development sessions throughout the week focused on topics ranging from résumé writing to navigating the industry with confidence.

Lounge Hours

Tuesday, 07 March	10:00–17:00
Wednesday, 08 March	10:00–17:00
Thursday, 09 March	10:00–16:00

Please refer to your OFC Buyers' Guide and Addendum for more details on the exhibition and other activities on the show floor, including participating company information, a map of the exhibit hall and specific presentation schedules for many of the programs. Check the OFC Conference App for regular updates to show floor programming.

Expo Theater I, Exhibit Hall C

Sponsored by

Market Watch

This three-day series of panel discussions engages the latest application topics and business issues in the field of optical communications. Presentations and panel sessions feature esteemed guest speakers from industry, research and the investment community.

The program will be located on the exhibit floor. Attendees can easily attend the sessions and tour the exhibit hall. Audience members are encouraged to participate in the question and answer segments that follow the presentations.

Market Watch and Theater I Schedule

Tuesday, 07 March					
Panel I: State of the Industry					
Panel II: PAM vs. Coherent for Data Center Connectivity					
Panel III: 800G / 128GBaud Pluggable Coherent - Key Technologies and Applications					
COBO: Design Considerations of Optical Connectivity in a Co-Packaged or On-Board Optics Switch					
Wednesday, 08 March					
Panel IV: Performance-Centric Long Haul					

Thursday, 09 March				
10:30–12:00	Panel V: Perspectives on the Future of ROADM Technologies and Architectures for Next-Gen Networks			
12:15–13:45	Panel VI: Satellite Communications – Coherent Optics in Free Space			
14:00–14:30	Cisco Sponsored Session			
14:45–15:45	3D Sensing in High Volume Consumer and Automotive Applications			

Network Operator Summit

This dynamic program presents the inside perspective from service providers and network operators– their issues, drivers, and how their requirements may impact the future of the industry. Everyone in the supply chain, from equipment manufacturers to components, will want to hear what's next in meeting the needs of all network operators.

Network Operator Summit Schedule

Wednesday, 0	Wednesday, 08 March					
10:15–10:45	Network Operator Summit: Keynote Andreas Gladisch, Vice-President, Deutsche Telekom AG, Germany					
11:00–12:30	Panel I: What's the Value of Optical Network Automation and How Can Optics Help					
13:00–14:30	Panel II: Brownfield Application in Legacy Networks					

2023 Show Floor Program Chair

Scott Wilkinson, Cignal AI, USA

Expo Theater II Programming, Exhibit Hall E

Sponsored by Amphenol

Data Center Summit

This program focuses on next generation optical technologies for intra and/or inter data center connectivity. It discusses evolving data center requirements for technologies, equipment, applications and deployment scenarios in hyperscale and enterprise.

Theater II Schedule

Tuesday, 07 M	Tuesday, 07 March				
10:45–11:45	OCP: Optics in Future AI Systems: Interconnects, Switching and Processing				
12:00–12:30	Data Center Summit: Keynote Chongjin Xi, Senior Director, Chief Communication Scientist, Alibaba Group, USA				
12:30–14:00	Data Center Summit Panel I: More than a Clos: Future Datacenter Network Architectures and the Role of Optics				
14:15–15:45	Data Center Summit Panel II : Open Line Systems – Can We Shape "Disaggregation" in One Direction?				
16:00-17:00	Amphenol Sponsored Session				

Please refer to your OFC Buyers' Guide and Addendum for more details on the exhibition and other activities on the show floor, including participating company information, a map of the exhibit hall and specific presentation schedules for many of the programs. Check the OFC Conference App for regular updates to show floor programming.

Wednesday, 08 March					
10:30–11:30	Ethernet Alliance: Ethernet in Telecom: The Rise of ZR and ZR+ for Metro (and Beyond?)				
11:45–12:45	OpenZR+: OpenZR+MSA - New Developments and Next Steps				
13:00–14:00	OIF: Defining 800ZR and 800L; An OIF Update				
14:15–15:15	FBA: The State of Fiber in America				
15:30–16:30	Broadband Forum: Technologies and Focus to Add Value to the Goal of a Single Multi-Access Optical PON Network				
Thursday, 09 M	larch				
11:00-12:00	AIM Photonics and the Next PIC Generation				
12:15–13:15	OIF: Enabling Next Generation Co-Packaging Solutions				
13:30–14:30	IPEC: IPEC Overview of Optoelectronic Technology and Industry Standards in the Cloud Era				
14:45–15:45	F5G Update: The Second Release				

Expo Theater III Programming, Exhibit Hall F

Schedule

Tuesday, 07 N	/larch
10:15–10:45	Conversation with the Plenary Speakers
11:00–12:00	ITU-T SG15: Standards Update with the Latest on 5G Transport, Higher Speed PON, SDM, OTN Technologies and Interoperable Optical Interfaces
12:15–12:45	How Innovations in Coherent Optical Engines Can Deliver Substantial Value to Telecom Networks Presented by Infinera
13:15–13:45	OFCnet
14:15–14:45	OFCnet Optical Engineering and Maintenance
15:00–16:00	IEEE Future Directions: Space- Based Optical, Communications and Networking
16:15–16:45	OFCnet Quantum Key Distribution
Wednesday, (08 March
10:15–10:45	SWK Series: Next Generation Connectivity Presented by Sumitomo Electric Lightwave
11:00–11:30	OFCnet Quantum Network - Coexistence, Transporting Entanglements

11:40–12:10	OFCnet High Performing Networks Demonstrations
12:20–12:50	With Growing Bandwidth Demand Driving Innovative Optical Technologies, What Is the Impact on Network Architectures Today and Tomorrow? Presented by Infinera
13:00–13:30	OFCnet Backstage Pass: Highlighting the Unsung Heroes of Optical Connectivity
13:45–14:45	OpenROADM: Open ROADM MSA Updates and Demonstration
15:00–15:30	Bringing Order to Chaos – OIF – Part 1 Presented by OIF
15:30–16:00	Bringing Order to Chaos – OIF – Part 2 Presented by OIF
Thursday, 09	March
10:15–10:45	QXP Innovative Silicon-based Midex Materials for Photonic Integration Presented by QXP Technologies Inc.
11:00–11:30	OFCnet Emerging Technologies
13:30—15:00	MOPA: Mobile Optics (MOPA) for the 6G Era

Show Floor

Please refer to your OFC Buyers' Guide and Addendum for more details on the exhibition and other activities on the show floor, including participating company information, a map of the

exhibit hall and specific presentation schedules for many of the programs. Check the OFC Conference App for regular updates to show floor programming.

OFCnet, Booth 5917

Starting in 2023, OFCnet brings a new opportunity to the exhibition to demonstrate products, concepts, solutions, research, and architectures in a live high-speed optical network connected to leading research and education networks worldwide. This increased focus on

designing and building the next generation of Optical Networks will enable OFCnet to bring emerging technologies, Quantum Computer networks, programmability, and network software applications for big data applications to the forefront of the industry.

OFCnet Committee

Marc Lyonnais, Ciena, Canada, Chair C. Randy Giles, Optica, USA, Chair Gwen Amice, EXFO, Canada Sana Bellamine, CENIC, USA Dave Brown, Nokia, USA Cees de Laat, University of Amsterdam, Netherlands Rich Finlinson, UETN, USA Casey Foulds, uTD, USA Maurizio Gazzola, Cisco, USA Eve Griliches, Cisco, USA Scott Kohlert, Ciena, Canada Reza Nejabati, University of Bristol, UK Kevin Quire, UETN, USA Tunde Sanda, CENIC, USA Jim Stewart, UETN, USA Sergey Ten, Corning, USA Chris Tracy, Esnet, USA Carl Williams, CJW Quantum Consulting, USA Rodney Wilson, Ciena, Canada

Live demonstrations from the following organizations and companies will be connected through OFCnet. Please refer to the Buyers' Guide for more details.

Poster Presentations

W2A • Posters Session I.

Th2A • Posters Session III.

In-Person

In-Person

Poster presentations are an integral part of the techni-

cal program and offer an opportunity for lively discus-

sion between the poster presenters and attendees.

Beverages and light snacks are served during poster

sessions. More information about the posters can be

found in the abstract section of this program book.

Wednesday, 08 March

Thursday, 09 March

Exhibit Hall B1

10:30-12:30

10:30-12:30

ADVA Ciena FSnet Ethernet Alliance ID Quantique NuCrypt Qunnect Qubitekk Northwestern University - ICAIR NTT Labs Nokia NFC OIF SDSC University of Amsterdam University of Bristol UCSD UTD Verizon

OFCnet is supported by:

VIAVI Solutions

Please refer to your OFC Buyers' Guide and Addendum for more details on the exhibition and other activities on the show floor, including participating company information, a map of the exhibit hall and specific presentation schedules for many of the programs. Check the OFC Conference App for regular updates to show floor programming.

Technical Program and Steering Committees

General Chairs

Ramon Casellas, CTTC, Spain Chris Cole, Coherent Corp., USA Ming-Jun Li, Corning Inc., USA

Program Chairs

Nick Fontaine, Nokia Bell Labs, USA Fotini Karinou, Microsoft Research Ltd, UK Elaine Wong, University of Melbourne, Australia

Subcommittees

Track D: Devices, Components, and Fibers

D1: Advanced Prototyping, Packaging and Integration

Long Chen, Cisco Systems, USA, Subcommittee Chair Juthika Basak, Nokia Corp., USA Long Frank Chang, Source Photonics, USA Fred Kish, North Carolina State Univ., USA Sylvie Menezo, SCINTIL Photonics, France Sam Palermo, Texas A&M Univ., USA Joris Van Campenhout, IMEC, Belgium Xi Xiao, Wuhan Research Inst. of Post & Telecom, China Molly Piels, Juniper, USA

D2: Passive Components

Yikai Su, Shanghai Jiao Tong Univ., China, Subcommittee Chair Glenn Bartolini, Coherent, USA Stefano Camatel, Finisar Australia, Australia Qixang Cheng, Cambridge Research Inst., UK Lukas Chrostowski, Univ. of British Columbia, Canada Kazuhiro Ikeda, AIST, Japan Christi Madsen, Texas A&M Univ., USA Sagi Mathai, Hewlette Packard Labs, USA Miloš Popović, Boston Univ., USA Mengjie Yu, Univ. of Southern California, USA

D3: Active Components

Hai-Feng Liu, HG Genuine, China, Subcommittee Chair Tomoyuki Akiyama, Fujitsu Laboratories Ltd., Japan Omer Khayam, Google LLC, USA Martin Schell, Fraunhofer Institut, Germany Matthew Sysak, Ayar Labs, USA Mitsuru Takenaka, Univ. of Tokyo, Japan Connie Chang-Hasnain, Berxel, China Askhan Seyedi, NVIDIA, USA Patrick Lo, AMF, Singapore Joyce Poon, Max Planck Institute of Microstructure Physics, Germany Wei Shi, Univ. of Laval, Canada

D4: Fiber and Propagation Physics

Lara Garrett, Subcom, USA, Subcommittee Chair Peter Andrekson, Chalmers University of Technology, Sweden Sophie Camille Bres, EPFL, Switzerland Ivana Gasulla, Universitat Politecnica de Valencia, Spain Takashi Matsui, NTT Access Service Systems Labs, Japan Luca Palmieri, Univ. of Padova, Italy Georg Rademacher, NICT, Japan Pierre Sillard, Prismian Group, France Toshiki Taru, Sumitomo Electric Industries Ltd., Japan Natalie Wheeler, Univ. of Southampton, UK Aramias Zakharian, Corning, USA Benyuan Zhu, OFS Laboratories, USA

D5: Fiber Devices, Fiber Lasers and Amplifiers, and Nonlinear Waveguides

Michael Vasilvev, Univ. of Texas at Arlington, USA, Subcommittee Chair Raja Ahmad, Molex, USA John Ballato, Clemson Univ., USA Xiaoyi Bao, Univ. of Ottawa, Canada Yong-min Jung, Optoelectronics Research Centre (ORC), ŪΚ Xiaoying Li, Tianjin Univ., China Yosuke Mizuno, Yokohama National Univ., Japan Sergei P. Nikitin, T8 Sensor, Russia Chester C.T. Shu, Chinese Univ. of Hong Kong, Hong Kong Yi Sun, OFS Optics, USA Hidehisa Tazawa, USumitomo Electric Industries Ltd., Japan Changyuan Yu, The Hong Kong Polytechnic Univ., Hong Kong

Track S: Subsystems and Systems

S1: Datacom Subsystems and Systems

Xiaodan Pang, Kungliga Tekniska Hogskolan Kista, Sweden, Subcommittee Chair Robert Borkowski, Nokia Bell Labs, USA Jingchi Cheng, Huazhong Univ. of Science and Technology, China Trey Greer, NVIDIA, USA Fumio Koyama, Tokyo Institute of Technology, Japan Fan Li, Sun Yat-Sen Univ., China Wenhua Lin, Intel Corp., USA Clint Schow, Univ. of California, Santa Barbara, USA Norman Swenson, Collinear Networks, USA Brian Taylor, Inphi, USA

S2: Transmission Subsystems

Hussam Batshon, NEC Laboratories America Inc., USA, Subcommittee Chair
Di Che, Nokia Bell labs, USA
Hung-Chang (James) Chien, Marvell Technology, USA
John Downie, Corning Inc., USA
Jianqiang Li, Kuaishou Technology, USA
Gabriele Liga, Technical Univ. of Eindhoven, Netherlands
David Millar, Infinera Canada, Canada
Dario Pilori, INRIM, Italy
Laurent Schmalen, Karlsruhe Institute of Technology, Germany
Ke (Desmond) Wang, RMIT Australia, Australia
Jiang Xu, Hong Kong Univ. of Science and Technology, Hong Kong, China
Xian Zhou, Univ. Of Science & Technology Beijing, China

S3: Transmission Systems

Lidia Galdino, Corning, UK, Subcommittee Chair Amirhossein Ghazisaeidi, Nokia Bell Labs, France Fatima Gunning, Tyndall National Institute, Ireland Ezra Ip, NEC Laboratories America Inc., USA Toshiaki Koike-Akino, MERL, USA Sergei Makovejs, Corning Inc., USA Antonio Mecozzi, Univ. of L'Aqualia, Italy Alexei Pilipestkii, Subcom, USA Kohki Shibahara, NTT, Japan Yuta Wakayama, KDDI Research, Inc., Japan

Committees

S4: Optical Processing, Microwave and Fiber-Sensing

Ben Puttnam, NICT, Japan, Subcommittee Chair Tetsuya Kawanishi, Waseda Univ., Japan Lan Li, Meta, USA David Marpaung, Univ. of Twente, Netherlands Mikael Mazur, Nokia Bells Labs, USA Peng-Chun Peng, National Taipei Univ. of Technology, Taiwan Lalitha Ponnampalam, Univ. College London, UK Radan Slavik, Univ. Of Southampton, UK Dawn Tan, Singapore Univ. of Technology & Design, Singapore

Darko Zibar, Denmark Technical Univ., Demark

S5: Free-Space (FSO), Ranging (LIDAR), and Radioover-Fiber (RoF)

Christina Lim, Univ. Of Melbourne, Australia, Subcommittee Chair
Chi-Wai Chow, National Yang Ming Chiao Tung Univ., Taiwan
Thomas Clark, JHU Applied Physics Lab, USA
Baris Erkmen, Google, USA
James Lott, TU Berlin, Germany

Maria Morant Perez, Univ. Politecnica de Valencia, Spain

Anthony Ngoma, Corning, Inc., USA

- Oskars Ozolins, RISE Research Institutes of Sweden, Sweden
- Shilong Pan, Nanjing Univ. of Aeronautics and Astronautics, China
- Bernhad Schrenk, FAustrian Institute of Technology, Austria
- Eduward Tangdionga, NTechnische Univ. Eindhoven, Netherlands

Morio Toyoshima, NICT, Japan

Jhih-Heng Yan, Chunghwa Telecom, Taiwan

Track N: Networks and Services

N1: Advances in Development of Systems, Networks and Services

Albert Rafel, British Telecommunications, UK, Subcommittee Chair Mattia Cantono, Google, USA Jiajia Chen, Facebook, USA Frank Effenberger, Futurewei, USA Binbin Guan, Microsoft, USA Qian Hui, Nokia Bell Labs, USA Priyanth Mehta, Ciena Corp., USA Stephan Pachnicke, Univ. Kiel, Germany Dirk van den Borne, Juniper, Germany Ting Wang, NEC-Labs, USA Tiejun (TJ) Xia, Verizon Communications Inc., USA Sophie Zhang, China Telecom, China

N2: Optical Networking for Data Center and Computing Applications

Georgios Zervas, Univ. College London, UK, Subcommittee Chair Hitesh Ballani, Microsoft Research Ltd., UK Keren Bergman, Columbia Univ., USA Nicola Calabretta, Technische Universiteit Eindhoven, Netherlands Xiaoliang Chen, Sun Yat Sen Univ., China Odile Liboiron-Ladouceur, McGill Univ., Canada Nikos Pleros, Aristotle Univ. of Thessaloniki, Greece Volker Sorger, George Washington Univ., USA Xian Xiao, Hewlett Packard Labs, USA

Ben Yoo, Univ. Of California Davis, USA

N3: Architectures and Software-defined Control for Metro and Core Networks

Paolo Monti, Chalmers Tekniska Hogskola, Sweden, Subcommittee Chair Konstantinos (Kostas) Christodoulopoulos, Nokia Bell Labs Germany, Germany Jamie Gaudette, Microsoft, USA Hasegawa Hiroshi, Ngoya Univ., Japan Jason Jue, The Univ. of Texas as Dallas, USA Dan Kilper, Trinity College Dublin, Ireland Ricardo Martinez, CTTC, Spain Cristina Rottondi, Politecnico di Torino, Italy Hidenori Takahashi, KDDI Research, Inc., Japan Christine Tremblay, École de Technologie Supérieure, Canada Murat Yuksel, Univ. of Central Florida, USA Zuging Zhu, Univ. of Science & Technology of China, China

N4: Optical Access Networks for Fixed and Mobile Services

Luiz Anet Neto, IMT Atlantique, France, Subcommittee Chair Nan Chi, Fudan Univ., China Naveena Genay, Orange Labs Network, France Shin Kaneko, NTT, Japan Yuanqiu Luo, Futurewei Technologies, USA Annachiara Pagano, TIM, Italy Paola Parolari, Politecnico di Milano, Italy Dora Van Veen, Nokia Bell Labs, USA Huang Xingang, ZTE, China Mu Xu, Cable Labs, USA Lilin Yi, Shanghai Jiao Tong Univ., China Jim Zou, ADVA, Germany

N5: Market Watch, Network Operator Summit & Data Center Summit (Invited Program Only)

Takashi Saida, NTT Corp., Japan, Subcommittee Chair Martin Birk, Curbius, USA Paulina Gomez, Ciena, Canada Lisa Huff, Omdia, USA Kentaro Nakamura, Fujitsu, Japan Art Nichols, Windstream, USA Sanjai Parthasarathi, Coherent Corp., USA Lian Qin, Inphi, USA Andrew Schmitt, Cignal-AI, USA Ryohei Urata, Google LLC, USA Werner Weiershausen, Deutsche Telecom AG, Germany Tom Williams, Cisco, USA

New! Subcommittee Q: Quantum Devices, Systems and Networking

Eleni Diamanti, CNRS, France, Subcommittee Chair Andrea Blanco-Redondo, Nokia Bell Labs, USA Fumio Futami, Tamagawa Univ., Japan David Hillerkuss, Infinera, Germany Gregory Kanter, NuCrypt, USA Michael Kues, Hannover Univ., Germany Fabian Laudenbach, Xanadu Quantum Computing, Canada Rui Lin, Chalmers Univ. of Technology, Sweden Mekena Metcalf, Lawrence Berkeley National Laboratory, USA Jason Orcutt, IBM TJ Watson Research Center, USA Cheryl Sorace-Agaskar, MIT Lincoln Laboratory, USA Rui Wang, Univ. of Bristol, UK Ying-Ju Wang, ColdQuanta, USA Zhiliang Yuan, Beijing Acad of Quantum Info. Sciences, China

OFC Steering Committee

Optica (formerly OSA)

Laurent Schares, IBM TJ Watson Research Center, USA, Chair Ramon Casellas, CTTC, Spain Steve Plote, Nokia, USA Jun Shan Wey, Verizon Communications Inc., USA

IEEE/Communications Society

Stephen B. Alexander, Ciena Corporation, USA Loukas Paraschis, IEEE Communication Society, and Alphawave Semi, USA George Rouskas, North Carolina State Univ., USA Ann von Lehmen, DARPA, USA

IEEE/Photonics Society

Gabriella Bosco, Politecnico di Torino, Italy Christopher Doerr, Doerr Consulting, LLC, USA Jörg-Peter Elbers, ADVA Optical Networking SE, Germany Dalma Novak, Pharad LLC, USA

Ex-Officio

Jiajia Chen, Meta, USA Chris Cole, Coherent Corp., USA Johannes Fischer, Fraunhofer Heinrich-Hertz Inst., Germany Chris Fludger, Infinera, Germany Nicolas Fontaine, Nokia Bell Labs, USA Tetsuya Hayashi, Sumitomo Electric Indusries Ltd., Japan Fotini Karinou, Microsoft, UK Ming-Jun Li, Corning Inc., USA Roland Ryf, Nokia Bell Labs, USA Dimitra Simeonidou, University of Bristol, UK Elaine Wong, University of Melbourne, Australia

OFC Budget Committee

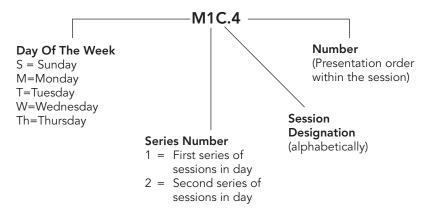
Loudon Blair, Ciena Corporation, USA Douglas M. Razzano, IEEE Photonics Society, USA Elizabeth A. Rogan, Optica, USA Seb Savory, University of Cambridge, UK Laurent Schares, IBM TJ Watson Research Center, USA Harold Tepper, IEEE Communications Society, USA

OFC Long Range Planning Committee

Steven Alexander, Ciena Corporation, USA, Chair
Fred Bartholf, Comcast, USA
Jörg-Peter Elbers, ADVA Optical Networking SE, Germany
Stu Elby, MSG Ventures, USA
Lynn Nelson, AT&T, USA
Loukas Paraschis, IEEE Communication Society, and Alphawave Semi, USA
Douglas M. Razzano, IEEE Photonics Society, USA
Elizabeth A. Rogan, Optica, USA
Laurent Schares, IBM TJ Watson Research Center, USA
Harold Tepper, IEEE Communications Society, USA
Vijay Vusirikala, Google, USA
Glenn Wellbrock, Verizon Communications, Inc., USA
Peter Winzer, Nubis Communications, USA

Journal of LIGHTWAVE TECHNOLOGY 40th An IEEE / OPTICA PUBLISHING GROUP Publication

Celebrating Forty Years of high-quality publications in all aspects of optical guided-wave science, technology, and engineering.



Celebrate by accessing all JLT Best Paper Award winning papers, available Open Access. ieee-jlt.org

Explanation of Session Codes

The first letter of the code denotes the day of the week (Sunday=Sunday, Monday=M, Tuesday=Tu, Wednesday=W, Th=Thursday). The second element indicates the session series in that day (for instance, 1 would denote the first parallel sessions in that day). Each day begins with the letter A in the third element and continues alphabetically through a series of parallel sessions. The lettering then restarts with each new series. The number on the end of the code (separated from the session code with a period) signals the position of the talk within the session (first, second, third, etc.). For example, a presentation coded M1C.4 indicates that this paper is being presented on Monday (M) in the first series of sessions (1), and is the third parallel session (C) in that series and the fourth paper (4) presented in that session.

Invited Presentation

C

Tutorial Presentation

Record Presentation

Top-Scored Top Scored Paper

Agenda of Sessions — Sunday, 05 March

	Room 6C	Room 6D	Room 6E	Room 6F	Room 7AB	Room 8	
08:30–12:30	SC105, SC203, SC208, SC328, SC395, SC432, SC443, SC461, SC463, SC469, SC470						
09:00–12:00			SC177, SC	216, SC444			
12:00-13:00			Lunch Bre	ak (on own)			
13:00–15:30	S1A • Workshop: Smart Pluggable Coherent Optics: Is it the End of Layered IP Over DWDM?S1B • Workshop: Cuantum Dots - The Resurrection?S1C • Workshop: Is Optical Access in Good Shape for the Future?S1D • Workshop: Will Optics Have a Role to Play in Scaling Out Future Quantum Computing Architectures? IS1E • Workshop: Is It Really Game Over for the Quest to Approach Fiber Capacity Limits?S1F • Workshop: W are the Boundaries Between IM-DD and Coherent?						
13:00–16:00			SC447	, SC512			
13:00–17:00			SC267, SC	384, SC514			
13:00–18:00		Optical Tra	nsmission Systems - Design	n and Simulation Worksho	p, Room 31A		
15:30–16:00			Coffee Break, Up	per Level Corridors			
16:00–18:30	S2A • Workshop: Revolutionary vs. Evolutionary SDM Fibers: Extra Gain at Extra Complexity?	S2B • Workshop: Will Machine Learning be the Killer Application for Optical Networks in Data Centres?	S2C • Workshop: Perennial Bandwidth at Home: LiFi or FiWi?	S2D • Workshop: Will Optics Have a Role to Play in Scaling Out Future Quantum Computing Architectures? II	S2E • Workshop: Does Optics have a Role in Space?	S2F • Workshop: Slow and Wide Versus Fast and Narrow: How Do We Make our Datacenters Green?	
19:00-21:00	Hack Your Research! Tools and Tricks for Today's Telecommunications Techies, Room 17						

Short Courses are an excellent training opportunity to learn about new products, cutting-edge technology and vital information at the forefront of communications. They are offered Sunday and Monday and require an additional fee. Go to ofcconference.org/shortcourse for a list of available short courses and the format in which they will be offered.

Key to Shading

Short Courses

Agenda of Sessions - Monday, 06 March

Room 1AB	Room 1AB Room 2 Room 3		Room 6C	Room 6D			
Coffee Break, Upper Level Corridors							
M1A • Special Session: Ultra- Stable Frequency Sources and their Future Applications in Telecom I	M1B • SDM Devices and Amplifiers M1C • Circulators, Mode Multiplexers, Dispersion		M1D • Panel: Virtualization in Optical Networks: A Reality Check	M1E • Coherent Technologies for Data Centers			
SC102,	SC160, SC341, SC369, SC433	3, SC448, SC452, SC453A, SC45	4, SC472, SC473, SC483, SC487	,SC513			
		SC359, SC450, SC465					
	(Coffee Break, Upper Level Corrid	lors				
M2A • Special Session: High Performance Networks of Future Data Center and Computing Applications	M2B • SDM Devices and Systems	M2C • Fiber- and Waveguide-Based Sensors	M2D • High Speed EMLs and DMLs	M2E • Optical Fiber and Device Modelling			
	OF	C Mentor/Mentee Meet-up, Roo					
		Lunch Break (on own)					
	S	C114, SC217, SC408, SC459, SC	485				
	SC261, SC325, SC	327, SC347, SC357, SC393, SC4	431, SC451, SC453B				
M3A • Symposium: Quantum Information and Optical Communication Networks: Emerging Research Areas, Challenges and Opportunities I	M3B • Multi-Core Fiber	M3C • Free Space and Coupling Devices	M3D • RF and THz Signal Generation	M3E • Enabling Technologie for Data Center and HPC			
	1	M3Z • OFC Demo Zone, Room of	6A	l			
	(Coffee Break, Upper Level Corrid	lors				
Birds of a Feather: Designing and Operating the Next Generation Optical Photonic Networks, Room 14B							
M4A • Symposium: Quantum Information and Optical Communication Networks: Emerging Research Areas, Challenges and Opportunities II	M4B • Multi-Mode Fiber	M4C • High Power and Comb Laser Sources	M4D • Panel: 1.6Tb/s+ Intra- DC Networks	M4E • High Bandwidth Density Interconnects for Computing			
0 Student Party, Petco Park							
	M1A • Special Session: Ultra- Stable Frequency Sources and their Future Applications in Telecom I SC102, M2A • Special Session: High Performance Networks of Future Data Center and Computing Applications M3A • Symposium: Quantum Information and Optical Communication Networks: Emerging Research Areas, Challenges and Opportunities I Birds M4A • Symposium: Quantum Information and Optical Communication Networks: Emerging Research Areas, Challenges and Opportunities I	M1A • Special Session: Ultra-Stable Frequency Sources and their Future Applications in Telecom I M1B • SDM Devices and Amplifiers SC102, SC160, SC341, SC369, SC433 M2A • Special Session: High Performance Networks of Future Data Center and Computing Applications M2B • SDM Devices and Systems M3A • Symposium: Quantum Information and Optical Communication Networks: Emerging Research Areas, Challenges and M4B • Multi-Mode Fiber	Coffee Break, Upper Level Corrice M1A • Special Session: Ultra- Stable Frequency Sources and their Future Applications M1B • SDM Devices and Amplifiers M1C • Circulators, Mode Multiplexers, Dispersion Compensators, Ultrasound and Wavemeters SC102, SC160, SC341, SC369, SC433, SC448, SC452, SC453A, SC45 SC359, SC450, SC465 W2A • Special Session: High Performance Networks of Future Data Center and Computing Applications M2B • SDM Devices and Systems M2C • Fiber- and Waveguide-Based Sensors OFC Mentor/Mentee Meet-up, Row Lunch Break (on own) SC114, SC217, SC408, SC459, SC SC261, SC325, SC327, SC337, SC357, SC357, SC393, SC The Journal Review Process: All You Need to H M3A • Symposium: Quantum Information and Optical Communication Networks: Emerging Research Areas, Challenges and Opportunities I M3B • Multi-Core Fiber M3B • Multi-Core Fiber M3C • Free Space and Coupling Devices M4A • Symposium: Quantum Information and Optical Communication Networks: Emerging Research Areas, Challenges and M4B • Multi-Mode Fiber M4B • Multi-Mode Fiber M4C • High Power and Comb Laser Sources	Coffee Break, Upper Level Corridors M1A • Special Session: Ultra- Stable Frequency Sources and their Future Applications M1B • SDM Devices and Amplifiers M1C • Circulators, Mode Multiplexers, Dispersion Compensators, Ultrasound and Wavemeters M1D • Panel: Virtualization in Optical Networks: A Reality Check SC102, SC160, SC341, SC369, SC433, SC448, SC452, SC453, SC454, SC472, SC473, SC483, SC487 SC359, SC450, SC450, SC454, SC472, SC473, SC483, SC487 M2A • Special Session: High Performance Networks of Future Data Center and Computing Applications M2B • SDM Devices and Systems M2C • Fiber- and Waveguide-Based Sensors M2D • High Speed EMLs and DMLs M3D • Sc2114, SC217, SC408, SC459, SC485 SC2611, SC325, SC327, SC347, SC337, SC431, SC451, SC453B DMLs M3A • Symposium: Quantum Information and Optical Communication Networks: Emerging Research Areas, Challenges and Opportunities 1 M3B • Multi-Core Fiber M32 • OFC Demo Zone, Room 6A Coffee Break, Upper Level Corridors Birds of a Feather: Designing and Operating the Next Generation Optical Communication Networks: Emerging Research Areas, Challenges and M4B • Multi-Mode Fiber M4A • Symposium: Quantum Information and Optical Communication Networks: Emerging Research Areas, Challenges and M4B • Multi-Mode Fiber M4A • High Power and Comb Laser Sources M4D • Panel: 1.6Tb/s+ Intra- DC Networks			

Short Courses

information at the forefront of communications. They are offered Sunday and Monday and require an additional fee. Go to ofcconference.org/shortcourse for a list of available short courses and the format in which they will be offered.

Agenda of Sessions

Room 6E	Room 6F	Room 7AB	Room 8	Room 9
		Coffee Break, Upper Level Corridor	S	
M1F • Complexity Optimized Coding and DSP for Optical Communications	M1G • Survivability and Security	M1H • Panel: Towards Standardized PIC Testing: Challenges and Roadmaps	M11 • Photonic Integrated QKD (ends at 09:30)	M1J • Optical Signal Processing
S	C102, SC160, SC341, SC369, SC43	3, SC448, SC452, SC453A, SC454,	SC472, SC473, SC483, SC487,SC	513
		SC359, SC450, SC465		
		Coffee Break, Upper Level Corridor	s	
M2F • Machine Learning for System Modeling and Channel Equalization	M2G • Data Center Networking and PON Security (ends at 12:15)	M2H • Panel: Connectivity for Beyond 5G: How Can Wireline and Wireless Optical Access Live Up to the Mobile Expectations?	M2I • Innovative QKD Systems (ends at 12:15)	M2J • Optical Computing
	OF	C Mentor/Mentee Meet-up, Room	17	
		Lunch Break (on own)		
	S	C114, SC217, SC408, SC459, SC48	35	
	SC261, SC325, SC	C327, SC347, SC357, SC393, SC43	1, SC451, SC453B	
	The Journal R	eview Process: All You Need to Kn	ow!, Room 14B	
M3F • LIDAR, RADAR and Ranging Systems	M3G • Telemetry and Synchronisation	M3H • Panel: Optical Fiber Sensing: Technology and Emerging Applications Part I	M3I • Monolithic or 3D Electro- Optical Integration	M3J • Accurate Frequency/ Time Distribution and Optical Computing
		M3Z • OFC Demo Zone, Room 6A		
		Coffee Break, Upper Level Corridor	S	
	Birds of a Feather: Designing and (Operating the Next Generation Op	otical Photonic Networks, Room 14	В
M4F • Visible Light Communications and Positioning (ends at 18:15)	M4G • Multi-X Networks	M4H • Panel: Optical Fiber Sensing: Technology and Emerging Applications Part II	M4I • Passive Silicon Photonic Devices	M4J • Photonic Switching Devices
		Student Party, Petco Park		1

Agenda of Sessions — Tuesday, 07 March

	Room 1AB	Room 2	Room 3	Room 6C	Room 6D	Room 6E	Room 6F	
07:30–08:00	Plenary Session Coffee Break, Upper Level, Ballroom 20 Lobby							
08:00–10:00			Tu1A • P	lenary Session, Ballroc	om 20BCD			
10:00–17:00			Exhibition and Sho	w Floor, Exhibit Hall (c	oncessions available)			
10:00–14:00			Unopposed Exhibit-onl	y Time, Exhibit Hall (co	offee service 10:00–10:30))		
10:00–16:45		OF		Career Zone, Exhibit F ir Resume Critique W	Hall, B2 /orkshop Mock Intervi	ews		
11:00–12:00		Opt	tical Communications T	echnical Group Poster	Pitch Competition, Ro	om 3		
12:00–14:00		OFC ar	nd Co-Sponsors Awards	Ceremony and Lunch	eon, Upper Level, Ballro	pom 20A		
14:00–16:00	Tu2A • Symposium: The Crucial Role of Photonics in Achieving the UN Sustainability Development Goals: Learnings and Opportunities I	Tu2B • Photonic Devices for Novel Applications	Tu2C • Deployment and Field Trials	Tu2D • Network Planning and Operation	Tu2E • Co-Packaged and PIC for Data Center Applications	Tu2F • AI and Optimization in (Disaggregated) Networks	Tu2G • Subsea and Long-Haul Transmission	
16:00–16:30			Coffee Break,	Upper Level Corridors	and Exhibit Hall			
16:30–18:30	Tu3A • Symposium: The Crucial Role of Photonics in Achieving the UN Sustainability Development Goals: Learnings and Opportunities II	Tu3B • Photonic Integrated Circuits	Tu3C • New Materials and Technologies	Tu3D • Network Orchestration	Tu3E • SDM - For Short Reach and Long-Haul Transmission Systems	Tu3F • Coexistence and Emerging Use- Cases of PON	Tu3G • Subsea and Sensing Networks	
17:15–18:15	Exhibitor Reception, Center Terrace							
18:30–20:00	Conference Reception, Upper Level, Ballroom 20BCD							
19:30–21:30	Rump Session: Is the Silicon Photonics Platform about to be Standardized, Diversified or Supplanted?, Room 6F							

Room 7AB	Room 8	Room 9	Exhibit Hall Theater I	Exhibit Hall Theater II	Exhibit Hall Theater III
Plenary Session	Coffee Break, Upper Level, B	allroom 20 Lobby		Exhibit Hall Opens 10:00	
Tu1A	Plenary Session, Ballroom 2	20BCD	MW1 • MW Panel I: State of the Industry	SF2 • OCP: Optics in Future AI Systems:	Conversation with the Plenary Speakers
Exhibition and S	Show Floor, Exhibit Hall (conc	essions available)	10:30–12:00	Interconnects, Switching and Processing	10:15–10:45 SF3 • ITU-T SG15:
Unopposed Exhibit-	only Time, Exhibit Hall (coffee	e service 10:00–10:30)	MW2 • MW Panel II: PAM vs. Coherent for Data	10:45–11:45	Standards Update
	FC Career Zone, Exhibit Hall, Fair Resume Critique Work		Center Connectivity 12:15–13:45	DCSK • Data Center Summit Keynote: Past	with the Latest on 5G Transport, Higher Speed PON, SDM,
Optical Communication	s Technical Group Poster Pit	ch Competition, Room 3	MW3 • MW Panel III:	Experiences and Future Prospects of Data Center	OTN Technologies, and Interoperable Optical
OFC and Co-Sponsors Awa	ards Ceremony and Luncheon	, Upper Level, Ballroom 20A	800G / 128GBaud Pluggable Coherent -	Interconnect Optical Networks	Interfaces
Tu2I • Panel: LiDAR Systems and Technologies with Integrated Photonics	Tu2H • Quantum Computing (ends at 15:45)	Tu2J • Radio-Over-Fiber for 5G and Beyond Systems	 Pluggable Coherent - Key Technologies and Applications 14:00–15:30 SF1 • COBO: Design Considerations of Optical Connectivity in a Co- Packaged or On-Board Optics Switch 15:45–16:45 	12:00–12:30 DCS1 • DCS Panel I: More than a Clos: Future Datacenter Network Architectures and the Role of Optics 12:30–14:00 DCS2 • DCS Panel II:	How Innovations in Coherent Optical Engines Can Deliver Substantial Value to Telecom Networks Presented by Infinera 12:15–12:45 OFCnet Panel
Coffee Bre	ı ak, Upper Level Corridors and	I Exhibit Hall			13:15–13:45
Tu3H • Quantum Interconnect and Hybrid Classical/Quantum Systems	Tu3l • High-Baud Rate Data Center Technologies	Tu3J • W-Band Fiber- Wireless Links		Open Line Systems - Can We Shape "Disaggregation" in One Direction? 14:15–15:45 Amphenol Sponsored Session 15:00-16:00	OFCnet Optical Engineering and Maintenance 14:15–14:45 SF4 • IEEE Future Direc- tions: Space-Based Opti- cal Communications and Networking 15:00–16:00
Exhibitor Reception, Center Terrace					OFCnet Quantum Key Distribution
Conference	Reception, Upper Level, Ball	room 20BCD			16:15–16:45
	Rump Session: Is the Silicon Photonics Platform about to be Standardized, Diversified or Supplanted?, Room 6F			Exhibit Hall Closes 17:00	

Agenda of Sessions — Wednesday, 08 March

	Room 1AB	Room 2	Room 3	Room 6C	Room 6D	Room 6E	Room 6F
07:30–08:00			Coffe	e Break, Upper Level Co	prridors		
07:00–08:30			International Wome	n's Day Breakfast, Uppe	er Level, Ballroom 20A		
08:00–10:00	W1A • Advanced Photodetectors	W1B • Special Session: Photonics for Visible Wavelengths I	W1C • Fiber Characterization and Fiber Sensing	W1D • Panel: Advanced Packaging Technologies for Optical Modules	W1E • DSP Design and System Modeling	W1F • 5G and Beyond	W1G • Optical Networks for Machine Learning Systems
10:00–17:00		1	Exhibition and Show	Floor, Exhibit Hall, (coff	ee service 10:00–10:30)	1	1
10:00–16:30				C Career Zone, Exhibit ob Fair Resume Critiq			
10:30–12:00			The Art of Wri	ting the Perfect OFC P	aper, Room 14B		
10:30–12:30			W2B • Posters Session	rs Session I, In-Person, on II, Remote, ePoster (own; concessions availa	Gallery on OFC website		
12:00–14:00				ing Group Journal of L ry Luncheon, Upper Lev			
12:30–14:00			Unoppos	ed Exhibit-only Time, E	Exhibit Hall		
14:00–16:00	W3A • Symposium: Beyond the Hype of Network Analytics: Use Cases, Feasibility and Barriers I	W3B • Special Session: Photonics for Visible Wavelengths II	W3C • Devices for Quantum Technologies (Joint D5/SCQ)	W3D • Modulators and Transceivers	W3E • Transmission Impairment Mitigation and Compensation Techniques	W3F • Convergent Optical Access for Mobile Connectivity	W3G • Photonic Processing for Computing and ML
16:00–16:30			Coffee Beak,	Upper Level Corridors a	and Exhibit Hall	·	·
16:30–18:30	W4A • Symposium: Beyond the Hype of Network Analytics: Use Cases, Feasibility and Barriers II	W4B • Lasers and CPO	W4C • Advanced Optical Technologies	W4D • Hollow Core Fiber (ends at 18:15)	W4E • Direct Detection and Short Reach Transmission Systems	W4F • Converged Fixed and Mobile Networks	W4G • Machine Learning for Estimation and Forecasting

Agenda of Sessions

Room 7AB	Room 8	Room 9	Room 4	Exhibit Hall Theater I	Exhibit Hall Theater II	Exhibit Hall Theater III
Coff	ee Break, Upper Level Co	rridors			Exhibit Hall Opens at	10:00
International Wom	en's Day Breakfast, Uppe	r Level, Ballroom 20A		NOSK • Network	SF5 • Ethernet	SWK Series: Next
W1H • Optical Performance Monitoring	W1I • Flexible Coherent PON	W1J • Fiber Sensing		Operator Summit: Keynote 10:15–10:45 NOS1 • NOS Panel I: What's the Value	Alliance: Ethernet in Telecom: The Rise of ZR and ZR+ for Metro (and Beyond?) 10:30–11:30	Generation Connectivity Presented by Sumitomo Electric Lightwave 10:15–10:45 OFCnet Quantum Network - Coexistence, Transporting
Exhibition and Shov	v Floor, Exhibit Hall, (coffe	e service 10:00–10:30)	_	of Optical Network Automation and How	SF6 • OpenZR+: OpenZR+MSA - New	Entanglements 11:00–11:30
-	FC Career Zone, Exhibit I Job Fair Resume Critiqu			Can Optics Help 11:00–12:30	Developments and Next Steps 11:45–12:45	OFCnet High Performing Networks Demonstrations 11:40–12:10
The Art of W	riting the Perfect OFC Pa	per, Room 14B	_	NOS2 • NOS II: Brownfield	SF7 • OIF: Defining	With Growing Bandwidth
W2B • Posters Sess	ers Session I, In-Person, E ion II, Remote, ePoster G n own; concessions availab	allery on OFC website		Applications in Legacy Networks 13:00-14:30800ZR and 800LR; an OIF Update 13:00-14:00Demand Driving Ir Optical Technolog Is the Impact on N Architectures Todat Tomorrow? Preser Infinera 14:45-16:15MW4 • MW Panel IV: Performance-Centric Long Haul 14:45-16:15SF9 • FBA: The State of Fiber in America 14:15-15:15Demand Driving Ir Optical Technolog Is the Impact on N Architectures Todat Tomorrow? Preser Infinera 12:20-12:50SE10 • BroadbandOFCnet Backstage	Demand Driving Innovative Optical Technologies, What Is the Impact on Network Architectures Today and	
	hing Group Journal of Lig ary Luncheon, Upper Leve				of Fiber in America	Tomorrow? Presented by Infinera
Unoppo	osed Exhibit-only Time, E	xhibit Hall				OFCnet Backstage
W3H • Coherent Pluggables and Field Trials	W3I • Enabling Technology for Free Space Optical Communications (ends at 15:45)	W3J • Sensing, Devices and OTDR				Pass: Highlighting the Unsung Heroes of Optical Connectivity 13:00–13:30 SF8 • OpenROADM: Open ROADM MSA Updates and Demonstration
Coffee Beak	, Upper Level Corridors a	nd Exhibit Hall			13.30-10.30	13:45–14:45
W4H • Transmission Systems and Modelling	W4I • Open Networking Summit: Top to Bottom: Practical Approaches	W4J • Hybrid Communication/ Sensing Systems	W4K • Quantum Networks (ends at 18:15)			Bringing Order to Chaos – OIF – Part 1 Presented by OIF 15:00–15:30
	to Openness, Disaggregation, and Reaggregation in Optical					Bringing Order to Chaos – OIF – Part 2 Presented by OIF 15:30–16:00
	Communication				Exhibit Hall Closes at	17:00

Agenda of Sessions — Thursday, 09 March

	Room 1AB	Room 2	Room 3	Room 6C	Room 6D	Room 6E	Room 6F
06:00-07:00			Rise and Shin	e Morning Run/Walk,	Hilton Bayfront	1	
07:30-08:00			Coffee	Break, Upper Level Co	orridors		
08:00–10:00	Th1A • Novel Photonic Devices and Applications	Th1B • Nonlinear- Optical Amplifiers and Oscillators	Th1D • Data Center Networks and Control	Th1C • Panel: Promises, Prospects and Challenges of VCSELs for Data Center Interconnects, Free-Space Communications, and Sensing	Th1E • Beyond 400G Transmission	Th1F • Machine Learning and Advanced Digital Signal Processing	Th1G • Signal Processing in Next- Generation PON
10:00–15:45		OF	OF C Career Zone Job Fai	C Career Zone, Exhibit r Resume Critique W		ews	
10:00–16:00			Exhibition and Show I	-loor, Exhibit Hall, (coff	ee service 10:00–10:30))	
10:30–12:30				s Session III, In-Person own; concessions availa			
12:30-14:00			Unoppos	ed Exhibit-only Time, I	Exhibit Hall		
13:00-14:00		Pers	onal Branding for Socia	al Media Workshop, O	FC Career Zone, Exhib	it Hall	
14:00–16:00	Th3A • Novel Enabling Devices	Th3B • Silicon Photonics Devices and Integrated Circuits	Th3C • Doped Fiber Amplifiers	Th3D • Advances in Data Center Switching and Interconnects	Th3E • Modulation Formats	Th3F • Wideband Transmission Systems	Th3G • High Data-Rate Direct Detection in Access (ends at 15:45)
16:00–16:30			Coffee	Break, Upper Level Co	orridors		·
16:30–18:30		Postdeadline Paper Sessions, Room 6C, 6D, 6E, 6F					

Room 7AB	Room 8	Room 9	Exhibit Hall Theater I	Exhibit Hall Theater II	Exhibit Hall Theater III
Rise and S	hine Morning Run/Walk, Hilte	on Bayfront		Exhibit Hall Opens at 10:00	
	ffee Break, Upper Level Corric	1	MW5 • MW Panel V: Perspectives on the	SF11 • AIM Photonics and the Next PIC Generation	QXP Innovative Silicon- based Midex Materials
Th1J • Panel: How Can We Start to Consistently and Quantitatively Account for End-to-End Power Consumption, Beginning with a Focus on 100 Meter Datacenter Links?	Th11 • THz Optical Communications	Th1H • Satellite Communications and UV, LWIR Free Space Optical Communications	Future of ROADM Technologies and Architectures for Next- Gen Networks 10:30–12:00 MW6 • MW Panel VI: Satellite Communications - Coherent Optics in Free	11:00–12:00 SF12 • OIF: Enabling Next Generation Co-Packaging Solutions 12:15–13:15 SF13 • IPEC: IPEC Overview of	for Photonic Integration Presented by QXP Technologies Inc. 10:15–10:45 OFCnet Emerging Technologies 11:00–11:30
	OFC Career Zone, Exhibit Hai Fair Resume Critique Works		Space 12:15–13:45	Optoelectronic Technology and Industry	SF14 • MOPA: Mobile Optics (MOPA) for the 6G
Exhibition and Sho	w Floor, Exhibit Hall, (coffee s	service 10:00–10:30)		Standards in the Cloud	Era
	ters Session III, In-Person, Ex on own; concessions available		Cisco Sponsored Session 14:00–14:30	Era 13:30–14:30	13:30–15:00
Unopp	osed Exhibit-only Time, Exhi	bit Hall	SF15 • 3D Sensing in High	SF16 • F5G Update: The	
Personal Branding for S	ocial Media Workshop, OFC	Career Zone, Exhibit Hall	Volume Consumer and Automotive Applications	Second Release of Use Cases and Demonstrations	
Th3I • Panel: Roadmap for Photonic Al Accelerators	Th3H • Free Space and Optical Camera Communications (ends at 15:45)	Th3J • Advanced Control in Quantum Systems	14:45–15:45	14:45–15:45	
Cot	Coffee Break, Upper Level Corridors				
Postdeadline Paper Sessions, Room 6C, 6D, 6E, 6F			Exhibit Hall Closes at 16:00		

Room 1AB	Room 2	Room 3	Room 6C	Room 6D
	07:30	-08:00 Coffee Break, Upper Level Co	rridors	
08:00–10:00 M1A • Special Session: Ultra-Stable Frequency Sources and their Future Applications in Telecom I Presider: Daniel Blumenthal and Nicolas Fontaine; Nokia Bell Labs,	08:00–10:00 M1B • SDM Devices and Amplifiers Presider: Yi Sun; OFS Fitel LLC, USA	08:00–10:00 M1C • Circulators, Mode Multiplexers, Dispersion Compensators, Ultrasound and Wavemeters Presider: Glenn Bartolini; Coherent	08:00–10:00 M1D • Panel: Virtualization in Optical Networks: A Reality Check Organizers: Jamie Gaudette, <i>Microsoft, USA</i> ; Ricardo Martinez, CTTC, Spain; Annachiara Pagano, Telecom Italia, Italy	08:00–10:00 M1E • Coherent Technologies for Data Centers Presider: Norman Swenson; Norman Swenson Consulting, USA
USA and Radan Slavik; Univ. of Southampton, UK M1A.1 • 08:00 Invited Title to be Announced, Christopher Hilweg'; 'Univer- sitat Wien, Austria. Abstract not available.	M1B.1 • 08:00 Invited Scaling Modal Capacity of Fibers by Exploit- ing Topological Properties of Light, Siddharth Ramachandran'; 'Boston Univ., USA. We describe the phenomenon and applications of topological confinement, a lighttransport mechanism distinct from total-internal reflection that has yielded up to 60 modes over a km with in-fiber intermodal crosstalk as low as -45 dB/km.	Inc, USA M1C.1 • 08:00 Invited Polarization-Insensitive Isolators and Circulators on InP Photonics, Yuqing Jiao'; 'Technische Uni- versiteit Eindhoven, Netherlands. On-chip isolators and circulators are regarded as the last piece of puzzel for photonic integrated circuits. In this talk recent successful demonstration of a polarization insensitive design, compatible with the InP laser process, is presented.	Speakers: Filippo Cugini, CNIT, Italy; Oscar González de Dios, Telefonica, Spain; Darren Loher, Google, USA; Priyanth Mehta, Ciena, USA; Emilio Riccardi, Telecom Italia, Italy Description: Over the last few years, telecom op- erators have consolidated the strategy for achieving cost-effective and flexible vendor-neutral open solutions by disaggregating the optical transport infrastructures. This will permit telecom operators to face the continuous growth of traffic while keeping a similar network cost (e.g., eliminating vendor lock-in). A key enabler to that is the virtualization concept ap- plied in a broad sense to embrace both the control/ management and data plane.	M1E.1 • 08:00 Invited Power Efficient Coherent Detection for Short- Reach System, Hongbin Zhang'; 'Cisco Systems Inc, USA. Faster-than-Nyquist QPSK based on symbol-rate DSP can maximize the link loss budget and enable a single laser solution and low-power driver design in 1.6 Tb/s DR4 short-reach systems.
M1A.2 • 08:30 Invited Title to be Announced, Giuseppe Marra'; 'National Physical Laboratory (UK), UK. Abstract not available.	M1B.2 • 08:30 Invited Structured Light Generation in Multicore or Multi- mode Fiber Amplifiers, Di Lin ¹ ; ¹ Univ. of Southamp- ton, UK. Abstract not available.	M1C.2 • 08:30 Fully Passive Integrated-Optic Chromatic Disper- sion Compensator and its Use to PAM4 Signal Compensation, Koichi Takiguchi'; 'Ritsumeikan Univ, Japan. We report an integrated-optic chromatic dispersion compensator without any adjustment parts. The compensator comprises two arrayed- waveguide gratings and 100 fixed delay lines and was used to compensate for 80 Gbit/s pulse amplitude modulation signal distortion.	The complexity for managing and controlling open and disaggregated networks notably increases since multiple providers at the system and component level will come into play. Thus, it is needed to rely on vendor-neutral control solutions (e.g., ONF Open disaggregated transport networks -ODTN) where open and standard APIs enables the SDN control- lers configuring multi-vendor network nodes. With respect to the SDN control architectures, an emerging solution revolves around the cloud-native (micro- services) technology with the aim to overcome the classic monolithic implementations towards a more agile, flexible, and scalable controllers (e.g., μ ONOS). At the data plane, the disaggregation helps eliminat- ing the vendor lock-in where an interesting step on this strategy is the evolution towards open packet and optical white boxes (e.g., Open Optical & Packet Transport -OOPT- project within the Telecom Infra Project, TIP). White boxes decouple the providers of both hardware, based on COTS and open com- ponents, from the software, i.e., Network Operating System (e.g., SONIC, Stratum,). This is enabled by open interfaces with the aim to accelerate the innovation, reduce cost, and increase the flexibility	M1E.2 • 08:30 Self-Coherent Transmission Using Metasurface- Based Stokes-Vector Receiver, Go Soma', Yo- shiro Nomoto ² , Toshimasa Umezawa ³ , Yuki Yoshida ³ , Yoshiaki Nakano ¹ , Takuo Tanemura', 'School of Engineering, The Univ. of Tokyo, Japan; ² Central Research Laboratory, Hamanatsu Photonics K.K. Japan; ³ National Inst. of Information and Communi- cations Technologies, Japan. Stokes-vector receiver with compact metasurface and two-dimensional photodetector array is developed to demonstrate 15-Gbaud 16QAM self-coherent transmission over 25- km single-mode fiber. Surface-normal configuration enables direct coupling to multi-core fibers in the future highly parallelized systems.

innovation, reduce cost, and increase the flexibility within disaggregated transport networks.

The panel is expected to last 2 h (5-6 speakers are expected with 10-15 minute). Speakers from academia, system vendors, telecom operators, and service providers will share their views on the current challenges

faced by deploying and operating virtualized optical network infrastructure. In addition, they will address the tradeoffs at play, identify the sweet spots of the

Room 6E	Room 6F	Room 7AB	Room 8	Room 9				
	07:30–08:00 Coffee Break, Upper Level Corridors							
08:00–10:00 M1F • Complexity Optimized Coding and DSP for Optical Communications Presider: Gabriele Liga; Eindhoven Univ. of Technology (TUe), Netherlands	08:00–10:00 M1G • Survivability and Security <i>Presider: Paolo Monti; Chalmers Univ.</i> of Technology, Sweden	08:00–10:00 M1H • Panel: Towards Standardized PIC Testing: Challenges and Roadmaps Organizers: Patrick Lo, Advanced Micro Foundry, Singapore; Ashkan Seyedi, NVIDIA, USA; Wei Shi, Université Laval, Canada	08:00–09:30 M1I • Photonic Integrated QKD Presider: Cheryl Sorace-Agaskar; MIT Lincoln Laboratory, USA	08:00–10:00 M1J • Optical Signal Processing Presider: Bill Corcoran; Monash Univ., Australia				
M1F.1 • 08:00 Tutorial Complexity-Optimized FEC for Optical Commu- nications, Frank R. Kschischang ¹ ; ¹ Univ. of Toronto, Canada. Abstract not available.	M1G.1 • 08:00 Invited Flexible Survivability in Multi-Band Next-Gener- ation Optical Transport Networks, António Eira ¹ , Andre Souza ¹² , João Pedro ¹² , 'Infinera Corporation, Portugal; ² Instituto de Telecomunicações, Portugal. We evaluate survivable network design options in the scope of C+L long-haul systems with high baud-rate channels. The analysis shows how design margins required for different failure response levels significantly affect resource and cost efficiency.	Speakers: Li Chao, Advanced Micro Foundry Pte Ltd, Singapore; Raphael Dube-Demers, EXFO, Canada; James Pond, Ansys, Canada; Ed Preisler, Tower-Jazz, USA; Anand Ramaswamy, OpenLight, USA; Ryan Scott, Keysight Laboratories, USA; Eric Snow, Intel Corporation, USA Description: This panel brings together industry leaders to discuss standardization of the PIC at the wafer-level, directly from the foundry. We propose a vision for defining standard test methodologies, data formats, test structures and associated figures of merit to allow for direct comparison of various silicon photonics processes. We also propose a simulation- based design approach based on validated models & process margins for new devices, which intends to accelerate design cycles and reduce spending. As the need for silicon photonics becomes critically important, these capabilities are paramount for the industry to achieve critical mass. Join the leaders from foundries, test & measurement vendors, EPDA	M11.1 • 08:00 Invited A Chip-Based Quantum Access Network Without Trusted Relays, Feihu Xu ¹ ; 'Univ of Science and Tech- nology of China, China. I will report our recent efforts towards the construction of a chip-based quantum access network using the measurement-device- independent protocols. This includes the recent experiments on Si chip-based QKD, high-rate QKD, twin-field QKD and all-photonic quantum repeater.	M1J.1 • 08:00 Ultra-Wideband Pulse Generation Based on Dispersion-Diversity Multicore Fiber, Mario Ureña Gisbert', Sergi García Cortijo', Ivana Gasulla Mestre', 'Universitat Politècnica de València, Spain. We experimentally demonstrate, for the first time, reconfigurable arbitrary waveform generation using a dispersion-diversity heterogeneous multicore fiber by synthesizing a variety of tunable high-order ultra- wideband pulses (up to 7 samples). M1J.2 • 08:15 Power Dissipation Bounds for Photonic Analog to Digital Converters, Callum Deakin', Zhixin Liu'; 'Univ. College London, UK. We present the first power dissipation bounds for a generalised class of photonic analog to digital converters, and estimate their achievable power efficiency compared to conventional electronic designs.				
	M1G.2 • 08:30 P4-Based Telemetry Processing for Fast Soft Fail- ure Recovery in Packet-Optical Networks, Filippo Cugini ¹ , Carlos Natalino da Silva ² , Davide Scano ³ , Francesco Paolucci ¹ , Paolo Monti ² ; ¹ CNIT, Italy; ² Electrical Engineering, Chalmers Univ. of Technology, Sweden; ³ Scuola Superiore Sant'Anna, Italy. A novel framework for in-network P4 processing of distributed telemetry data is presented, enabling effective soft failure detection and recovery strategies enforced in just few microseconds.	companies and silicon photonics vendors to hear the vision, to ask questions and to voice your opinion on how we as a community can move towards standard- ized PIC testing.	M11.2 • 08:30 CV-QKD Receiver Platform Based on a Silicon Photonic Integrated Circuit, Yoann Piétri ¹ , Luis Trigo Vidarte ² , Matteo Schiavon ¹ , Philippe Grangier ² , A. Rhouni ¹ , Eleni Diamanti ¹ ; ¹ LIP6 - CNRS - Sorbonne Université, France; ¹ ICFO - Institut de Ciènces Fotò- niques, The Barcelona Inst. of Science and Technol- ogy, Spain; ¹ Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, France. We report on the characterization of a SiGe PIC-based receiver along with its usage in a Gaussian-modulated coherent state CV-QKD setup. Excess noise measurements lead to secret key rate estimations of 280 kbit/s at 6.9km.	M1J.3 • 08:30 Wide-Bandwidth, Enhanced-Quality Wireless Signal Detection With Low-Bandwidth Devices, Moham- med I. Elsayed', Janosch Meier', Younus Mandalawi', Karanveer Singh', Paulomi Mandal', Evans Baidoo', Ayman M. Mokhtar', Thomas Schneider'; 'Technische Universität Braunschweig, Germany; ² Optoelectron- ics, Military Technical college, Egypt. We discuss a new method for detecting high-bandwidth wireless signals with low-bandwidth electronics. We experimentally demonstrate the detection of 24 GBd-QPSK Nyquist data with 4 GHz electronics and a Q-factor enhancement of 2.2 dB. © 2023 The Author(s)				

Room 1AB	Room 2	Room 3	Room 6C	Room 6D
M1A • Special Session: Ultra- Stable Frequency Sources and their Future Applications in Telecom I— Continued	M1B • SDM Devices and Amplifiers—Continued	M1C • Circulators, Mode Multiplexers, Dispersion Compensators, Ultrasound and Wavemeters—Continued	M1D • Panel: Virtualization in Optical Networks: A Reality Check—Continued	M1E • Coherent Technologies for Data Centers—Continued
		M1C.3 • 08:45 Free-Standing, Microscale, Mode-Selective Pho- tonic Lantern Supported by a Truss Structure, Yoav Dana', Dan Marom'; 'hebrew Univ. of jerusa- lem, Israel. We design, fabricate and characterize a three-mode selective photonic lantern using 3D waveguides made of photopolymer core and air cladding. Although the waveguides exhibit high index contrast, crosstalk between mode groups measures below - 10dB.	virtualization vision, and describe the best practices that should be in place. The panel will consist of two parts, one more related to the disaggregated / white box data plane aspects and one targeting more service and network control aspects. Finally, the panel will end with a panel discus- sion where the invited speakers and the audience will discuss the issues highlighted during the various talks.	M1E.3 • 08:45 DSP-Free Frequency Stabilized DCI Coherent Fiber Links Operating at 5.4Tbps 151x90G-16QAM, 330G 72G-32QAM, and 336G 56G-64QAM, Mark W. Harrington ¹ , Grant Brodnik ¹ , Andrei Isichenko ¹ , Kaikai Liu ¹ , Travis Briles ² , Scott Papp ²³ , Daniel J. Blu- menthal ¹ ; ¹ UCSB, USA; ² Time and Frequency division 688, NIST, USA; ² Physics, Univ. of Colorado, USA. We demonstrate a 5.4 Tbps (90G-16QAMx15A) DSP- free WDM coherent link and compare performance to single-A 360G 72G-32QAM and 56G-64QAM coherent links over 100m using an integrated coil-resonator-stabilized Brillouin-laser-pumped integrated Kerr-comb.
M1A.3 • 09:00 Invited Title to be Announced, Franklyn Quinlan'; 'National Inst of Standards & Technology, USA. Abstract not available.	M1B.3 • 09:00 Modal Gain Equalization of Few-Mode Erbium- Doped Fiber Amplifiers Enabled by Mirrored Mode Exchanges, Tao Xu ¹ , Zhiqun Yang ¹ , Yaping Liu ¹ , Qiang Guo ² , Rui Zhou ² , Xinhua Xiao ² , Wenhao L ³ , Wei L ³ , Cheng Du ³ , Zhanhua Huang ¹ , Lin Zhang ^{1,4} , 'Tianjin Univ., China; ² Hauwei Technologies Co., Ltd., China; ³ FiberHome Telecommunication Technologies Co., Ltd, China; ⁴ Peng Cheng Laboratory, China. We propose a six-mode erbium-doped fiber amplifier with significantly reduced differential modal gain (DMG) by mirrored exchanging of the spatial modes for the first time. A DMG of <1.8 dB across the whole C-band is experimentally achieved.	M1C.4 • 09:00 Fabrication-Tolerant, 2-Mode, 4A Multiplexer Based on Si Waveguides for Beyond Tbit/s Optical Ethernet, Takeshi Fujisawa ¹ , Kunimasa Saitoh ¹ ; ¹ Hok- kaido Univ, Japan. A fabrication-tolerant, 2-mode, 4I multiplexer is proposed for beyond Tbit/s optical Ethernet system. Various techniques for strengthening fabrication tolerance are introduced, and a proof-of- concept device is fabricated for Si-photonics platform.		MIE.4 • 09:00 Invited Self-Homodyne Coherent Systems for Short-Reach Optical Interconnects, Ming Tang'; 'Huazhong Univ of Science and Technology, China. Self-homodyne coherent detection scheme is promising for short- reach optical interconnect for its significantly reduced complexity and compatibility with legacy coherent infrastructure without sacrificing spectral efficiency. Solutions towards practical use are presented here with future perspectives.
	M1B.4 • 09:15 Power Efficient Core Pumped Multicore Erbium Doped Optical Fiber Amplifier, Takafumi Oht- suka', Takahiro Kikuchi', Takahiro Suganuma', Takemi Hasegawa', Hidehisa Tazawa'; 'Optical Communica- tions Laboratory, Sumitomo Electric Industries, LTD., Japan. A core pumped 4-core erbium doped optical fiber amplifier with a pump fan-in integrated combiner achieved the highest optical power conversion efficiency of 32.2% among reported C-band multicore erbium doped optical fiber amplifiers.	M1C.5 • 09:15 Athermal Silicon Photonic Wavemeter With Wide Temperature Range, Brian Stern ¹ , Kwangwoong Kim ¹ , Harry Gariah ² , David Bitauld ² ; ¹ Nokia Bell Labs, USA; ² III-V Lab (a joint lab of Nokia Bell Labs, Thales & CEA-LETI), France. We demonstrate a silicon pho- tonic wavemeter with high accuracy for broadband measurements over a large temperature range of 20-60 C. The integrated wavemeter reaches a mean error of 11 pm over an 80 nm span.		

44

Room 6E	Room 6F	Room 7AB	Room 8	Room 9
M1F • Complexity Optimized Coding and DSP for Optical Communications—Continued	M1G • Survivability and Security— Continued	M1H • Panel: Towards Standardized PIC Testing: Challenges and Roadmaps— Continued	M1I • Photonic Integrated QKD— Continued	M1J • Optical Signal Processing— Continued
	M1G.3 • 08:45 Packet-Optical Differentiated Survivability Imple- mented by P4 Slices and GNMI Telemetry, Rossano P. Pinto ¹ , Kayol S. Mayer ¹ , Dalton S. Arantes ¹ , Darli Mello ¹ , Christian E. Rothenberg ¹ ; ¹ UNICAMP, Brazil. We demonstrate a packet-optical differentiated survivability mechanism implemented in P4 switches using gNMI telemetry. The controller detects the premium slice interruption and switches it to an alternative path reducing the throughput of the regular slice.		M11.3 • 08:45 InP-Based CV-QKD PIC Transmitter, Jennifer D. Aldama ¹ , Samael Sarmiento-Hernández ¹ , Sebastian Etcheverry ¹ , Ignacio López Grande ¹ , Luis Trigo Vidarte ¹ , Lorenzo Castelvero ¹ , Alberto Hinojosa ² , Tobias Beckerwerth ¹ , Yoann Pičtri ⁴ , A. Rhouni ⁴ , Eleni Diamanti ⁴ , Valerio Pruneri ¹ ; ¹ /CFO-Institut de Ciencies Fotoniques, Spain; ² VLC, Spain; ¹ Fraunhofer HHI, Ger- many; ⁴ Sorbonne Université, CNRS, France. An InP- based photonic integrated circuit (PIC) transmitter for pulsed Gaussian-modulated coherent-state (GMCS) CV-QKD protocol is presented and characterized. Results show potential asymptotic secret key rates of 0.4 Mbps at 11 km, and up to 2.3 Mbps in back- to-back configuration.	M1J.4 • 08:45 Invited Automatic Turbulence Resilience in Self-Coheren Free-Space Optical Communications, Runzho Zhang', Xinzhou Su', Hao Song', Huibin Zhou', Mosh Tur', Alan Willner', 'Univ. of Southern California, US2 ² Tel Aviv Univ., Israel. We review the recently reporte self-coherent approaches that can enable resilier free- space optical communications using automatio optoelectronic multi-mode mixing.
MIF.2 • 09:00 Top-Scored Beyond 200-GBd QAM Signal Detection Based on Trellis-Path-Limited Sequence Estimation Sup- porting Soft-Decision Forward Error Correction, Masanori Nakamura ¹ , Hiroki Taniguchi ¹ , Shuto Yama- noto ¹ , Fukutaro Hamaoka ¹ , Munehiko Nagatani ²¹ , Ieruo Jyo ² , Miwa Mutou ² , Yuta Shiratori ² , Hitoshi Nakita ² , Takayuki Kobayashi ²¹ , Yutaka Miyamoto ¹ ; NTT Network Innovation Laboratories, Japan; ² NTT Device Technology Laboratories, Japan; ² NTT Device Technology Laboratories, Japan, We proposed and experimentally demonstrated a trellis-path- imited sequence estimation method combining the og-likelihood ratio from minimum-mean-square-error squalizer-enabled signal detection with soft-decision FEC decoding under severe bandwidth limitations, achieving 1.35-Tb/s 256-GBd 16QAM and 1.65-Tb/s 208-GBd 64QAM.	M1G.4 • 09:00 Invited Enhancement of Network-Cloud Ecosystem Resilience With Openness Disaggregation and Cooperation, Sugang Xu ¹ , Kiyo Ishii ² , Noboru Yoshikane ³ , Subhadeep Sahoo ⁴ , Sifat Ferdousi ⁴ , Masaki Shiraiwa ¹ , Yusuke Hirota ¹ , Takehiro Tsuritani ³ , Massimo Tornatore ³ , Yoshinari Awaji ¹ , Shu Namiki ² , Biswanath Mukherjee ^{4,4} ; ¹ National Inst. of Informa- tion and Communications Technology (NICT), Japan; ² National Inst. of Advanced Industrial Science and Technology (AIST), Japan; ³ KDDI Research, Inc., Japan; ⁴ Univ. of California, Davis, USA; ⁵ Politecnico di Milano, Italy; ⁶ Soochow Univ, China. We investigate the problem of enhancing the resilience of future optical network-cloud ecosystems. We introduce new solutions to build disaster-resilient single- and multi-entity network-cloud ecosystems with openness, disaggregation, and cooperation between networks		M11.4 • 09:00 Demostration of Reference Frame Independent Quantum Key Distribution With Integrated Optical Circuits, Kyongchun Lim', Byung-seok Choi', Joong- Seon Choe', Ju Hee Baek', Minchul Kim', Kap-Joong Kim', Chun Ju Youn', 'ETRI, Korea (the Republic of). Free-space quantum key distribution usually requires limited space and weight. We implement reference frame independent quantum key distribution protocol with chip-scale integrated optical circuits such as laser diode, variable optical attenuator, and polarization beam combiner.	
M1F.3 • 09:15 Implementation of a Robust and Power-Efficient	and clouds.		M11.5 • 09:15 Polarization-Encoded BB84 QKD Transmitter	M1J.5 • 09:15 Photonics-Enabled Nanosecond Scale Real-Tir

Implementation of a Robust and Power-Efficient Nonlinear 64-QAM Demapper Using in-Memory Computing, Amro I. Eldebiky', Georg Böcherer², Maximilian Schaedler², Stefano Calabrò², Bing Li¹, Ulf Schlichtmann¹; 'Electronic Design Automation chair, Technical Univ. of Munich (TUM), Germany; ²Huawei Munich Research Center, Germany. Analog in-memory computing reduces power consumption sacrificing computational accuracy. We implement multiplication-accumulation in resistive RAM accounting for non-idealities (variations, quantization, ADC noise). The floating-point performance is recovered while minimizing power consumption in offline 64-QAM experiments.

Sourced by a SiGe Light Emitter, Florian Honz¹,

Nemanja Vokic¹, Philip Walther², Hannes Hübel¹,

Bernhard Schrenk¹; ¹AlT Austrian Inst. of Technology,

Austria; ²Faculty of Physics, Univ. of Vienna, Univer-

sitat Wien, Wien, Wien, AT, academic, Austria. We

demonstrate a polarization-encoded BB84 transmitter

sourced by a SiGe light source and show that such

a potentially "all-silicon" QKD scheme can operate well below the QBER threshold at which secret keys

can be established.

Spectral Analysis With 92-GHz Bandwidth and MHz

Resolution, Xinyi Zhu¹, Benjamin Crockett¹, Connor

M. Rowe¹, Jose Azaña¹; ¹INRS-EMT, Canada. We

demonstrate gapless and real-time spectral analysis of broadband waveforms with >250 analysis points

per spectrum. The concept is based on a discretization

of an electro-optic time-lens to implement a phase

modulation equivalent to 206.25p.

Room 1AB	Room 2	Room 3	Room 6C	Room 6D
M1A • Special Session: Ultra- Stable Frequency Sources and their Future Applications in Telecom I— Continued	M1B • SDM Devices and Amplifiers—Continued	M1C • Circulators, Mode Multiplexers, Dispersion Compensators, Ultrasound and Wavemeters—Continued	M1D • Panel: Virtualization in Optical Networks: A Reality Check—Continued	M1E • Coherent Technologies for Data Centers—Continued
M1A.4 • 09:30 Invited Title to be Announced, Mark Saffman'; 'Univ. of Wisconsin-Madison, USA. Abstract not available.	M1B.5 • 09:30 Invited Photonic-Lantern-Based MDM Devices, Lars E. Grüner-Nielsen ^{1,2} , Neethu M. Mathew ¹ , Michael Galili ¹ , Lars S. Rishøj ¹ , Karsten Rottwitt ¹ ; ¹ DTU Electro, Tech. Univ. of Denmark, Denmark; ² Danish Optical Fiber Innovation, Denmark. Results for air clad photonic lanterns are presented including new results for a 6-mode photonic lantern. Results for cross talk dynamics in a 1.6 km link versus both time and wavelengths are presented.	M1C.6 • 09:30 64-Channel Fiber-Optic Ultrasound Detector Array With High Sensitivity for Photoacoustic Imaging, Anqi Wang', Liuyang Yang', Dongchen Xu', Geng Chen', Chenhao Dai', Qizhen Sun'; 'Huazhong Unix. of Science and Technology, China. We present a 64-channel fiber-optic ultrasound detector array with high sensitivity. The sensor can exhibit a NEP of 0.64kPa and a wide bandwidth about 47MHz, which gives a favorable resolution of photoacoustic imaging.		M1E.5 • 09:30 Top-Scored A 224 Gbps/A O-Band Coherent Link for Intra-Data Center Applications, Aaron Maharry ¹ , Stephen Mi- sak ¹ , Hector Andrade ¹ , Junqian Liu ¹ , Giovanni Gilardi ² , Sean Liao ² , Ansheng Liu ² , Yuliya A. Akulova ² , Larry Coldren ¹ , James Buckwalter ² , Clint Schow ¹ ; ¹ UC Santa Barbara, USA; ² Intel Corporation, USA. We present the first >200 Gbps/A O-band optical link with integrated transmitter and receiver photonic and electronic ICs. 224 Gbps/A DP-QPSK transmission is demonstrated below the 3.8 × 10 ³ HD-FEC threshold with 6.8 pJ/bit power consumption.
		M1C.7 • 09:45 Photonic Micro-Ring Tensor Core for Parallel and Shared Batch Processing, Jiang Yue', Wenjia Zhang', Xuying Liu', Zuyuan He'; 'State Key Laboratory of Advanced Optical Communication Systems and Net- works, Shanghai Jiao Tong Univ, China. We propose and experimentally demonstrate a batch dimension processing scheme based on the micro-ring weighting bank, which can at least quadruple the computing capability of the photonic tensor core without extra weighting units and power consumption.		M1E.6 • 09:45 A 2006b/s QAM-16 Silicon Photonic Transmitter With 4 Binary-Driven EAMs in an MZI Structure, Arian Hashemi Talkhooncheh', Aaron Zilkie ² , Guomin Yu ² , Roshanak Shafiiha ² , Azita Emami ¹ ; 'California Inst. of Technology, USA; 'Rockley Photonics Inc., USA. A DAC-less 200Gb/s QAM-16 transmitter in a multi- micron silicon-photonics platform using 4 binary- driven SiGe EAMs in an unbalanced MZI is presented. The transmitter exhibits bit-error rates of 3×10 ⁴ and 2.8×10 ⁴ for square and hexagonal constellations.

08:30–12:30 SC102, SC160, SC341, SC369, SC433, SC448, SC452, SC453A, SC454, SC472, SC473, SC483, SC487, SC513

09:00–12:00 SC359, SC450, SC465

10:00–10:30 Coffee Break, Upper Level Corridors

Room 6F	Room 7AB	Room 8	Room 9
M1G • Survivability and Security— Continued	M1H • Panel: Towards Standardized PIC Testing: Challenges and Roadmaps— Continued	M1I • Photonic Integrated QKD— Continued	M1J • Optical Signal Processing— Continued
M1G.5 • 09:30 An Open Line System With Ultra-Fast Protection Switching for Data Center Interconnect, Juan Wang', Yu Jin', Chen Zhu', Feng Gao', Yongxin Cui', Gang Cheng', Xu Zhou'; 'Baidu, China. We present a DCI OLS with 5ms ultra-fast protection switching. By optimizing the DSP traffic rebuild time with a magneto-optic switch, we are able to improve the current ITU standard by an order of magnitude.			M1J.6 • 09:30 Photonic Max-Pooling for Deep Neural Networks Using a Programmable Photonic Platform, Farshid Ashtiani ¹ , Mehmet Berkay On ^{1,2} , David Sanchez- Jacome ³ , Daniel Pérez-López ³ , S. J. Ben Yoo ² , Andrea Blanco-Redondo ¹ ; 'Nokia Bell Labs, USA; ² Univ. of California Davis, USA; ³ iPronics, Spain. We propose a photonic max-pooling architecture for photonic neural networks which is compatible with integrated photonic platforms. As a proof of concept, we have experimentally demonstrated the max-pooling function on a programmable photonic platform consisting of a hexagonal mesh of Mach-Zehnder interferometers.
M1G.6 • 09:45 Man-in-the-Middle Attacks Through Re-Shaping I-Q Optical Constellations, Marc Ruiz', Jaume Comellas', Luis Velasco'; 'Universitat Politecrica de Catalunya, Spain. A module to re-shape optical constellations making the optical signal resembles as it has traversed some distance is presented. Armed with this module, Main-in-the-Middle attacks can be performed, which could be undetectable by security systems.			M1J.7 • 09:45 Combined Parametric and Denoising Passive Amplification by FWM-Based Oversampling and Talbot-Based Decimation, Manuel P. Fernández ¹² , Saket Kaushal', Benjamin Crockett', Laureano A. Bulus Rossini ² , Pablo A. Costanzo Caso ² , Jose Azaña', 'Institut national de la recherche scientifique (INRS), Canada; 'Instituto Balseiro (UnCuyo-CNEA) & Conicet, Argentina. We present an optical waveform amplification methodology combining parametric and denoising passive amplification through all-fiber oversampling and dispersion-induced decimation. We demonstrate peak-to-peak gains up to 17 dB and effective denoising of MHz-bandwidth optical signals.
	 M1G • Survivability and Security— Continued M1G.5 • 09:30 An Open Line System With Ultra-Fast Protection Switching for Data Center Interconnect, Juan Wang', Yu Jin', Chen Zhu', Feng Gao', Yongxin Cui', Gang Cheng', Xu Zhou'; 'Baidu, China. We present a DCI OLS with 5ms ultra-fast protection switching. By optimizing the DSP traffic rebuild time with a magneto-optic switch, we are able to improve the current ITU standard by an order of magnitude. M1G.6 • 09:45 Man-in-the-Middle Attacks Through Re-Shaping I-O Optical Constellations, Marc Ruiz', Jaume Comellas', Luis Velasco'; 'Universitat Politecnica de Catalunya, Spain. A module to re-shape optical constellations making the optical signal resembles as it has traversed some distance is presented. Armed with this module, Main-in-the-Middle attacks can be performed, which 	 MTG • Survivability and Security— Continued MTH • Panel: Towards Standardized PIC Testing: Challenges and Roadmaps— Challenges and Roadmaps— Continued MTG.5 • 09:30 MTG.5 • 09:40 /ul>	MIG • Survivability and Security— Continued MIH • Panel: Towards Standardized PIC Testing: Challenges and Roadmaps— Continued M11 • Photonic Integrated QKD— Continued MIG • 09:30 MIH • Panel: Towards Standardized PIC Testing: Challenges and Roadmaps— Continued M11 • Photonic Integrated QKD— Continued MIG • 09:30 Min Chen Zuiv, Feng Gao; Yongain Cuiv, Gang Cheng', Xu Zhou'; 'Baidu, China. We present a DCI OLS with Sms ultra-fast protection switching. By optimizing the DSP traffic rebuild time with a magneto-optic switch, we are able to improve the current ITU standard by an order of magnitude. MII • Photonic Integrated QKD— Continued MIG.4 • 09:45 Man-in-the-Midde tataks Through Re-Shaping 1-O Optical Constellations, Marc Ruiz', Jaume Comellas', Luis Velasco'; 'Universitat Politeonica de Catalunya, Spain. A module to re-shape optical constellations making the optical signal resembles as it has traversed some distance is presented. Armed with this module, Main-in-the-Midde tataksca can be performed, which

08:30-12:30 SC102, SC160, SC341, SC369, SC433, SC448, SC452, SC453A, SC454, SC472, SC473, SC483, SC487, SC513

09:00-12:00 SC359, SC450, SC465

10:00–10:30 Coffee Break, Upper Level Corridors

Monday, 6 March

0 12:20

10:30–12:30 M2A • Special Session: High Performance Networks of Future Data Center and Computing Applications Presider: Laurent Schares; IBM, USA

Room 1AB

M2A.1 • 10:30 Invited

M2A.2 • 10:50 Invited

Title to be Announced, Rui Wang¹; ¹Google LLC, USA. Abstract not available.

Title to be Announced, Manya Ghobadi¹; ¹Massachu-

setts Inst. of Technology, USA. Abstract not available.

10:30–12:30 M2B • SDM Devices and Systems Presider: Yuta Wakayama; KDDI R&D Laboratories, Japan

Room 2

M2B.1 • 10:30 Invited

Performance Requirements for FIFO-Less Multicore Fibre Repeaters in Transatlantic-Class Transmission, Daniel J. Elson¹, Yuta Wakayama¹, Noboru Yoshikane¹, Takehiro Tsuritani¹, '*ICDI R&D Laboratories, Japan*. We use the extended droop model to evaluate the performance requirements for SDM repeaters in transatlantic systems. The impact of repeater crosstalk on cable capacity is evaluated separately from fibre effects.

M2C.1 • 10:30 Invited

10:30-12:30

Sensors

Canada

Transforming Subsea Optical Cables Into a Giant Network of Environmental Sensors, Giuseppe Marra'; 'National Physical Laboratory (UK), UK. 70% of the Earth's surface is water-covered, yet the ocean floor remains mostly unmonitored. We show how ultra-stable interferometry can change this by enabling seafloor cables to be used as arrays of environmental sensors.

Room 3

M2C • Fiber- and Waveguide-Based

Presider: Xiaoyi Bao; Univ. of Ottawa,

M2D.1 • 10:30 Invited

10:30-12:30

Canada

Ultrahigh Speed EA-DFB Lasers Beyond 200 Gbps per Lane, Kazuhiko Naoe'; 'Lumentum Japan, Inc., Japan. We describe 224 Gbps-PAM4 uncooled operation by EA-DFB. Moreover, 330.8-Gbps PAM6 (128-Gbaud PAM6), 384 Gbps PAM8 (128-Gbaud PAM8) and 420 Gbps PAM8 (140-Gbaud PAM8) operations by ultrahigh speed EA-DFB are reviewed.

Room 6C

M2D • High Speed EMLs and DMLs

Presider: Wei Shi; Université Laval,

Room 6D

10:30–12:30 M2E • Optical Fiber and Device Modelling Presider: Sergejs Makovejs; Corning Inc, UK

M2E.1 • 10:30

Experimental Model of EDFA Spectral Hole Burning for WDM Transmissions Systems, Juliana Tiburcio de Araujo¹, Alexis Carbo Meseguer¹, Jean-Christophe Antona¹; ¹Alcatel Submarine Networks (ASN), France. We propose an empirical model to characterize the Spectral Hole Burning (SHB) of a chain of 200 EDFA in WDM transmission systems. Then we test it with 300 random input pre-emphases obtaining an average of root-mean-square error down to 0.5 dB.

M2E.2 • 10:45

Auxiliary Neural Network Assisted Machine Learning EDFA Gain Model, Jiachuan Lin', Xiang Lin', Zhiping Jiang'; 'Huawei Technologies Canada, Canada. An enhanced EDFA model employing auxiliary neural networks is proposed. Adaptive to different devices, the model reduces the root mean square error from 0.04 to 0.02 dB with significantly less amount of training data.

M2E.3 • 11:00

Experimental Demonstration of Optical Modulation Format Identification Using SOI-Based Photonic Reservoir, Guillermo von Hünefeld^{1,2}, Gregor Ronniger¹, Enes Seker^{3,4}, Rijil Thomas³, Pooyan Safari¹, Isaac Sackey¹, Md Mahasin Khan¹, Stephan Suckow³, Max Lemme^{4,3}, David Stahl⁵, Colja Schubert¹, Johannes Karl Fischer¹, Ronald Freund^{1,2}; ¹Fraunhofer HHI, Germany; ²Technische Universität Berlin, Technische Universitat Berlin, Berlin, Berlin, DE, academic, Germany; ³AMO GmbH, AMO GmbH, Aachen, Nordrhein-Westfalen, DE, other/research, Germany; ⁴RWTH, Rheinisch-Westfalische Technische Hochschule Aachen, Aachen, Nordrhein-Westfalen, DE, academic, Germany; ⁵ID Photonics GmbH, Germany. We experimentally show modulation format identification of optical signals using siliconon-insulator (SOI) photonic-integrated-circuit-based reservoir. After 100-km SSMF transmission, we achieve identification of 32 GBd 4QAM, 16QAM, 32QAM and 64QAM signals with up to ~97% accuracy.

M2B.2 • 11:00 **Top-Scored** 10-Spatial-Mode 1300-km Transmission Over 6-LP Graded Index Few-Mode Fiber With 36-ns Modal Dispersion, Kohki Shibahara', Megumi Hoshi', Yutak Miyamoto'; 'NTT Network Innovation Laboratories, Japan. We demonstrate record-long 10-modemultiplexed transmission over 1300 km with 6-LP few-mode-fiber with modal dispersion coefficient of

157 ps/km. Modal-dispersion-unmanaged link was

built by cyclic mode-group permutation, achieving

reduction in modal dispersion accumulation by 82 %.

M2C.2 • 11:00

High-Sensitivity Acoustic Impedance Sensing Using Forward Stimulated Brillouin Scattering in Highly Nonlinear Fiber, Keyan Zeng¹, Liang Wang¹, Ming Tang¹, Deming Liu¹; ¹Huazhong Univ. of Sci. & Tech., China. High-sensitivity acoustic impedance sensing has been demonstrated for the first time by using radial acoustic modes induced forward Brillouin scattering in highly nonlinear fiber. The measurement sensitivity has been improved to be 3.83MHz/[kg/(semm²)]. M2D.2 • 11:00 Top-Scored 225 Gb/s PAM4 2 km and 10 km Transmission of EMLs With Hybrid Waveguide Structure for 800GbE and 1.6TbE Transceivers, Asami Uchiyama', Shinya Okuda', Yohei Hokama', Mizuki Shirao², Kenichi Abe³, Takeshi Yamatoya'; ¹High Frequency & Optical Device Works, Mitsubishi Electric Corporation, Japan; ²Information Technology R&D Center, Mitsubishi Electric Corporation, Japan; ³Advanced Technology R&D Center, Mitsubishi Electric Corporation, Japan. We experimentally demonstrated 10 km transmission of 225 Gb/s PAM4 modulation signal using our developed high-speed EMLs with a hybrid waveguide structure. Clear eye patterns were observed with 5 taps of TDECQ reference equalizer.

Room 6F

M2H • Panel: Connectivity for

the Mobile Expectations?

Zhang, Fudan University, China

technologies, architectures, etc.

Beyond 5G: How Can Wireline and

Wireless Optical Access Live Up to

Organizers: Frank Chang, Source Photonics, USA; Baris Erkmen, HERDON, USA; Albert Rafel, BT, UK;

Ke Wang, RMIT, Australia; Jim Zou, ADVA, Germany

Speakers: Devin Brinkley, X the Moonshot Factory,

USA; Hanne-Stine Hallingby, Telenor, Norway; Xiang

Liu, Huawei Technologies, Hong Kong; Junwen

Description: With 5G being commercially deployed

and ramped up and witnessing its revolution from 4G,

optical access technologies are plaving an intrinsic

role more than ever before to enable the connectivity

between the central office and remote radio units.

Looking ahead, both academia and industry have

already started investigating the next generation. 6G, in terms of requirements, use cases, enabling

Amongst the early research focusing on new radio technologies, it can be foreseen that more wireline and wireless optical access will be adopted, to sustain the even higher throughput and performance

demand, less energy consumption, more diverse

10:30-12:30

Room 8

10:30-12:15 M2I • Innovative QKD Systems Presider: Eleni Diamanti; CNRS, France

M2I.1 • 10:30 Invited

Atomic Clocks Technologies for Twin-Field QKD Andrew Shields², Marco Lucamarini³, Ivo Degiovanni¹, Davide Calonico1; 1INRIM, Italy; 2Toshiba Europe Ltd, and phase-coherent distribution of optical signals over fiber, in a Twin-Field Quantum Key Distribution system in a real world fiber network, and discuss possible improvements in key distribution.

Room 9

M2J.1 • 10:30 Invited

Optical RAM and Optical Cache Memories for Computing, Theonitsa Alexoudi¹, Chris Vagionas¹, Christos Pappas¹, Theodoros Moschos¹, Nikos Pleros¹; ¹Aristoteleio Panepistimio Thessalonikis, Greece, In this paper, we present the recent progress and achievements of optical RAM technologies expanding from single RAM cells up to fully functional optical cache memory implementations for future Computing architectures

M2J.2 • 11:00

An Optoelectronic Analog Ising Machine Enabling 2048-Spin and Low-Latency Calculations, Zihao Chen¹, Zhenhua Li¹, Zhaoang Deng¹, Jie Liu¹, Siyuan Yu1; 1Sun Yat-sen Univ., China. An optoelectronic analog Ising machine employing FPGA with DAC and ADC modules is experimentally demonstrated. The SpMV algorithm is applied to accomplish two MAX-CUT tasks mapped into 2048-spin Ising networks, taking only 1.68us per iteration.

10:30-12:30 M2F • Machine Learning for System Modeling and Channel Equalization

Presider: Jiangiang Li; Kuaishou Technology, USA

M2F.1 • 10:30 Tutorial

Digital Twins and Measurement Informed Physical Layer Models, Seb J. Savory¹; ¹Univ. of Cambridge, UK. Digital coherent transceivers can monitor the state of an optical network, enabling measurement informed physical layer models. After reviewing the measurement capabilities, we cover physicsbased and data-driven models, concluding with the requirements for digital twins.

10:30-12:15 M2G • Data Center Networking and PON Security Presider: Albert Rafel; British Telecommunications, UK

M2G.1 • 10:30 Invited

Apollo: Large-Scale Deployment of Optical Circuit Switching for Datacenter Networking, Hong Liu¹; ¹Google LLC, USA. We describe Apollo, the world's first large-scale production deployment of optical circuit switches (OCSes) for datacenter networking. We review the underlying hardware technologies including the design of our internally developed OCS and WDM transceivers.

M2G.2 • 11:00

Field Demonstration of Disaggregated Optical Network Consisting of ZR+ and Coherent Channels Using Power Equalization by Switched Gain Equalization Controlled Amplifiers, Sumit Chatterjee², Deepak Sanghi², Praveen Maheshwari², Abhishek Anchal¹, Eval Lichtman¹; ¹Ribbon Communications, Israel; ²Airtel, India. We report a field trial of 400G-ZR+ QSFP-DD-DCO and ten coherent channels, interoperating with oFEC between two different vendors. We equalize the power by switched gain equalization controlled amplifers. Field trial is verified by simulations.

networking scenarios, just to name a few. This panel will reveal and discuss new technology trends in the optical domain, ranging from key components to end-to-end system applications, including for instance 50G/100G BiDi optics, free-space optical transmission, microwave photonics, WDM-PON, and more. Some of them were already envisioned at the dawn of 5G but too early to be ready, while some of them are purely driven by the solid scaling factor.

The panelists from both academia and industry will share their thoughts and visions.

in Real World, Cecilia Clivati¹, Alice Meda¹, Simone Donadello¹, Marco Genovese¹, Filippo Levi¹, Salvatore Virzì¹, Alberto Mura¹, Mirko Pittaluga², Zhiliang Yuan⁴, UK; ³Univ. of York, UK; ⁴Beijing Academy of Quantum Information Sciences, China, We integrate atomic clocks technologies, namely narrow-linewidth lasers

High-Rate Continuous-Variable Measurement-Device-Independent Quantum key Distribution, Adnan Hajomer¹, Huy Q. Nguyen¹, Tobias Gehring¹; ¹Technical Univ. of Denmark, Denmark. We report the first continuous-variable measurement-deviceindependent QKD system generating secret keys at 5 MBaud without frequency and phase locking. We achieve this using a relay structure based on a polarization 90-degree optical hybrid and welldesigned DSP.

M2I.2 • 11:00 Top-Scored

Room 1AB	Room 2	Room 3	Room 6C	Room 6D
M2A • Special Session: High Performance Networks of Future Data Center and Computing Applications—Continued	M2B • SDM Devices and Systems— Continued	M2C • Fiber- and Waveguide-Based Sensors—Continued	M2D • High Speed EMLs and DMLs—Continued	M2E • Optical Fiber and Device Modelling—Continued
M2A.3 • 11:10 Invited Title to be Announced, Larry Dennison'; 'NVIDIA Corporation, USA. Abstract not available.	M2B.3 • 11:15 Partial MIMO-Based Mode Division Multiplexing Transmission Over the First Field-Deployed 15- Mode Fiber in Metro Scenario, Alberto Gatto ¹ , Paola Parolari ¹ , Ruben S. Luis ² , Georg Rademacher ² , Benjamin J. Puttnam ² , Robert Emmerich ³ , Colja Schubert ³ , Giuseppe Ferri ¹ , Frank Achten ⁴ , Pierre Sillard ⁴ , Paolo Martelli ¹ , Giammarco Di Sciullo ⁵ , Fabio Grazios ⁵ , Andrea Marotta ⁵ , Antonio Mecozzi ⁵ , Fabio Grazios ⁶ , Andrea Marotta ⁵ , Antonelli ⁶ , 'Politecnico di Milano - DEIB, Italy: ² National Inst. of Information and Comm. Technology (NICT), Japan; ³ Frauhofer Inst. for Telecommunications (HHI), Germany; ⁴ Prysmian Group, France; ⁵ Univ. of L'Aquila and CNIT, Italy. We assess mode division multiplexing transmission based on partial MIMO equalization over 6.1 km of the first deployed 15-mode fiber in L'Aquila, Italy. We demonstrate more than 13-Tb/s throughput with reduced receiver DSP resources.	M2C.3 • 11:15 Sweep-Free Brillouin Optical Correlation Domain Analysis Utilizing Digital Optical Frequency Comb, Huan He ¹ , Shuyan Chen ¹ , Can Zhao ¹ , Zhiyong Zhao ¹ , Songnian Fu ² , Ming Tang ¹ ; ¹ Huazhong Univ. of Sci- ence and Technology, China; ² Guangdong Univ. of Technology, China. We propose and demonstrate a probe sweep-free Brillouin optical correlation domain analysis sensor based on digital optical frequency comb, where acquisitions of Brillouin gain spectrum reach 20 kSa/s at arbitrary position with 10-cm spatial resolution.	M2D.3 • 11:15 Top-Scored 2006 per Lane Uncooled CWDM Hybrid CMBH- Ridge Electroabsorption Modulated Lasers for 2-km Transmission, Prashanth Bhasker ¹ , Sumeeta Arora ¹ , Alex Robertson ¹ , Tom McCaully ¹ , Adrian Ni ¹ , John Johnson ¹ ; ¹ Broadcom Inc, USA. We report uncooled (20-70C) hybrid CMBH-Ridge O-band CWDM EMLs with60 GHz bandwidth (BW). At 112.5GBd PAM4 and 1.1Vpp, 4 dB extinction ratio (ER) and greater than 7 dBm output power is dem- onstrated over temperature	M2E.4 • 11:15 KerrNet: Machine Learning to Speed up Exact Nonlinear Variance Computation of Arbitrary Links, Xiaoyan Ye ¹² , Amirhossein Ghazisaeidi ¹ ; ¹ Nokia bell labs France, France; ² Télécom Paris, France. We introduce a new QoT tool handling arbitrary transmission configurations based on neural networks, accelerating exact models for nonlinear variance: the computation time is reduced by six orders of magnitude while accuracy is not compromised
M2A.4 • 11:30 Invited High-Performance Networks for Disaggregated Systems, Binzhang Fu'; 'Alibaba Cloud, China. Abstract not available.	M2B.4 • 11:30 Mode-Group-Division Multiplexing Over a De- ployed 15-Mode-Fiber Cable, Lauren Dallachiesa ¹ , Roland Ryf ¹ , Nicolas K. Fontaine ¹ , Mikael Mazur ¹ , Haoshuo Chen ¹ , Pierre Sillard ² , Giuseppe Ferri ³ , Frank Achten ⁴ , Andrea Carena ⁵ , Antonino Nespola ⁴ , Andrea Marotta ⁷ , Antonio Mecozzi ⁷ , Cristian Antonelli ⁷ , ¹ Nokia Bell Labs, USA; ² Prysmian Group, France; ³ Prysmian Group, Italy; ⁴ Prysmian Group, Netherlands; ⁹ Po- litecnico di Torino, Italy; ⁴ Fondazione LINKS-Leading Innovation & Knowledge for Society, Italy; ⁷ Univ. of L'Aquila, Italy. We experimentally demonstrate transmission over a subset of up to 4 spatial modes of a deployed 15-mode Graded-index Fiber Cable.	M2C.4 • 11:30 Tutorial Solid State LIDAR, Toshihiko Baba'; 'Yokohama National Univ, Japan. Fully nonmechanical solid- state LiDARs are being developed, in particular, on photonics platform with OPA, FPA and SLG. They are in the stage of demonstrating real-time LiDAR action. This presentation discusses their perspective.	M2D.4 • 11:30 Top-Scored 225-Gb/s PAM4 Operation Using Lumped- Electrode-Type EA-DFB Laser for 5- and 10-km Transmission With Low TDECQ, Kazuki Nishimura', Hideaki Asakura', Syunya Yamauchi', Takanori Su- zuki', Yoshihiro Nakai', Yoriyoshi Yamaguchi', Takao Kageyama', Masatoshi Mitaki', Yuma Endo', Kazuhiko Naoe'; 'Lumentum Japan, Inc., Japan. Both 5-km and 10-km transmission was demonstrated under 225-Gb/s PAM4 operation using EA-DFB lasers. We confirmed low TDECQ values of 2.0~3.2 dB for 5 km in the CWDM range and 10 km at 1293.5 nm.	M2E.5 • 11:30 Tutorial Moding of Nonlinear Distortion in Space-Division Mytiplexing, Paolo Serena'; 'Universita degli Studi di Parma, Italy We discuss the modeling of nonlinear distortion theory, the interaction between mode dispersion and the Kerr effect, and Gaussian noise model-based performance predictions:
M2A.5 • 11:50 Invited Disaggregated Resources/CXL, Ram Huggahalli ¹ ; ' <i>Microsoft Azure, USA</i> . Abstract not available.	M2B.5 • 11:45 Long-Haul Unidirectional Transmission Over Weakly-Coupled MCF With Distance-Insensitive Inter-Core Skew Spread, Kohki Shibahara ¹ , Megumi Hoshi ¹ , Takashi Matsui ² , Takayoshi Mori ² , Kazuhide Nakajima ² , Yutaka Miyamoto ¹ ; ¹ NTT Network Innovation Laboratories, Japan; ² NTT Access Network Service Systems Laboratories, Japan, We		M2D.5 • 11:45 4 x 200 Gb/s EML-Array With a Single MQW Layer Stack, Michael A. Theurer ¹ , Christoph Kottke ¹ , Ron- ald Freund ^{1,2} , Felix Ganzer ¹ , Patrick Runge ¹ , Martin Moehrle ¹ , Ute Troppenz ¹ , Ariane Sigmund ¹ , Martin Schell ^{1,2} ; 'Fraunhofer Heinrich Hertz Inst., Germany; ² Technical Univ. Berlin, Germany. We demonstrate an EML-array for up to 4x200 Gb/s PAM4 modulation	

Monday, 6 March

Network Service Systems Laboratories, Japan, We demonstrate unidirectional 3000-km transmission over homogeneous step-index weakly-coupled multi-

core fiber. Distance-insensitive pulse broadening

is obtained by inline core-permutation without any fan-in/fan-out device, enabling inter-core-crosstalk cancellation at 3000 km only with 3-ns-processing

window in MIMO-DSP.

EML-array for up to 4x200 Gb/s PAM4 modulation at 45°C. Its single MQW layer stack design allows for low-cost fabrication. The device is optimized for

equal performance over four LAN-WDM wavelength

channels.

Room 6E	Room 6F	Room 7AB	Room 8	Room 9
M2F • Machine Learning for System Modeling and Channel Equalization—Continued	M2G • Data Center Networking and PON Security—Continued	M2H • Panel: Connectivity for Beyond 5G: How Can Wireline and Wireless Optical Access Live Up to the Mobile Expectations?— Continued	M2I • Innovative QKD Systems— Continued	M2J • Optical Computing— Continued
	M2G.3 • 11:15 Invited Hybrid Classical and Quantum Data Centers Using Optical Networks, Richard Murray ¹ ; ¹ ORCA Comput- ing, UK. Abstract not available.		M2I.3 • 11:15 Practical High-Speed Gaussian Coherent State Continuous Variable Quantum Key Distribution With Real-Time Parameter Monitoring and Post- Processed Key Distillation, Amanda Weerasinghe ¹ , Muataz Alhussein ¹ , He Li ¹ , Adrian Wonfor ¹ , Richard Penty ¹ ; 'Univ. of Cambridge, UK. We demonstrate Gaussian modulated continuous variable quantum key distribution at 50MHz symbol rate. Unlike most demonstrations, we record received signals in real- time and distil keys, producing a record 3Mb/s key rate after 25km transmission.	M2J.3 • 11:15 Top-Scored Programmable Tanh- and ReLU-Like Optoelec- tronic Activation Functions for Neuromorphic Photonic Circuits, Christos Papas', Stefanos Kovaios', Miltiadis Moralis-Pegios', Apostolos Tsakyridis', George Giamougiannis', Joris V. Kerre- brouck', Gertjan Coudyzer', Xin Yin ² , Nikos Pleros'; 'Aristotle Univ. of Thessaloniki, Greece; 'Ghent Univ., Belgium. We demonstrate reconfigurable tanh- and ReLU-like nonlinear activation functions for incoherent neuromorphic photonics using a balanced photodiode assembled with a programmable electronic TIA chip. Experimental results up to 10 Gb/s line-rates are presented.
M2F.2 • 11:30 Deep-Learning-Enabled High Electrical-Spectral- Efficiency Direct Detection With Reduced Compu- tation Complexity, Xingfeng Li ¹ , Jingchi Li ¹ , Shaohua An ¹ , Hudi Liu ¹ , William Shieh ² , Yikai Su ¹ , 'Shanghai Jiao Tong Univ., China; ² Westlake Univ., China. We demonstrate a 50-GBaud complex-valued double- sideband 16-QAM signal transmission over 80-km single-mode fiber with ~64% computational-budget reduction in field reconstruction. This is achieved by using 1×1 convolutions for dimensionality sparsification.			M2I.4 • 11:30 QKD Protocol Over 100 km Long Submarine Optical Fiber Assisted by a System-in-Package Fast-Gated InGaAs Single Photon Detector, Domenico Ribezzo ¹ , Mujtaba Zahidy ² , Antoine Petitjean ¹ , Gianmarco Lemmi ¹ , Claudia De Lazzari ³ , Ilaria Vagniluca ³ , Enrico Conca ⁴ , Alberto Tosi ⁴ , Tom- maso Occhipinti ³ , Francesco Saverio Cataliotti ⁶ , Leif Katsuo Oxenløwe ² , André Xuereb ⁵ , Davide Bacco ⁶ , Alessandro Zavatta ⁶ ; ¹ National Inst. of Optics INO- CNR, Italy; ² Centre for Silicon Photonics for Optical Communications (SPOC), Department of Electrical and Photonics Engineering, Technical Univ. of Den- mark, Denmark; ³ QTI SRL, Italy; ⁴ Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy; ⁵ Department of Physics, Univ of Malta, Malta; ⁶ Dipartiment di Fisica, Università degli studi di Firenze, Italy. A QKD link established between Sicily (Italy) and Malta has been utilized to test the performances of a fast-gated InGaAs single photon detector, achieving a fourteen times higher key rate than using a commercial detector.	M2J.4 • 11:30 Optoelectronic Neuromorphic Accelerator at 523.27 GOPS Based on Coherent Optical Devices, Ying Zhu ¹ , Xu Zhang ¹ , Xin Hua ² , Lu Xu ² , Xiao Hu ² , Ming Luo ¹ , Xi Xiao ¹ , Shaohua ¹ (1 ¹ ; ¹ State Key Labora- tory of Optical Communication Technologies and Networks, China Information and Communication Technologies Group Corporation (CICT), China; ² Na- tional Information Optoelectronics Innovation Center, China Information ond Communication Technologies Group Corporation (CICT), China: An integratable and scalable optoelectronic neuromorphic accelerator based on coherent optical devices is proposed and demonstrated. It can achieve the computing speed for convolutions of 523.27 GOPS and accuracy up to 96.67% for handwritten digit recognition as a neural network.
M2F.3 • 11:45 Edge-Carrier-Assisted Phase-Retrieval Based on Deep Learning Enabling low CSPR and low Applied Dispersion Values, Daniele Orsuti ¹ , Martina Cappel- letti ¹ , Marco Santagiustina ¹ , Andrea Galtarossa ¹ , Luca Palmieri ¹ ; ¹ Department of Information Engineering, Univ. of Padova, Italy. We explore the use of deep learning to loosen the constraints and enhance the performance of weak-carrier-assisted phase-retrieval receivers. The applied-dispersion-value can be reduced by 4-times and the complexity by 50% with low sensitivity penalties.	M2G.4 • 11:45 Branch Identification in Passive Optical Networks Using Machine Learning, Khouloud Abdelli ¹ , Carsten Tropschug ² , Helmut Griesser ² , Sander Jansen ² , Stephan Pachnicke ³ , 'ADVA, Kiel Univ., Germany, ² ADVA, Germany, ² Kiel Univ., Germany. A machine learning approach for improving monitoring in passive optical networks with almost equidistant branches is proposed and experimentally validated. It achieves a high diagnostic accuracy of 98.7% and an event localization error of 0.5m		M2I.5 • 11:45 Improvement of Satellite-to-Ground QKD Secret key Rate With Adaptive Optics, Valentina Marulanda Acosta ^{1,2} , Daniele Dequal ⁴ , Matteo Schiavon ² , Aurélie Bonnefois ¹ , Caroline Lim ³ , Jean-Marc Conan ¹ , Eleni Diamant ² ; ¹ ONERA, France; ² LIP6, France; ³ SYRTE, France; ¹ talian Space Agency, Italy. We demonstrate the gain brought by adaptive optics for space-ground QKD links. Refined modeling of turbulence, adaptive optics and QKD ,including finite-size effects, shows improvement by several orders of magnitude of the secret key rate.	M2J.5 • 11:45 Invited Artificial Intelligence Using Complex Photon- ics: Decision Making and Reservoir Comput- ing, Atsushi Uchida'; 'Saitama Unix, Japan. We overview recent development on photonic decision making and reservoir computing for artificial intelligence using complex photonics. Parallel implementations of photonic devices can accelerate information processing in decision making and reservoir computing.
		OFC 2023 • 05–09 March 2023		

Room 1AB	Room 2	Room 3	Room 6C	Room 6D
M2A • Special Session: High Performance Networks of Future Data Center and Computing Applications—Continued	M2B • SDM Devices and Systems— Continued	M2C • Fiber- and Waveguide-Based Sensors—Continued	M2D • High Speed EMLs and DMLs—Continued	M2E • Optical Fiber and Device Modelling—Continued
	M2B.6 • 12:00 Envited Impact and Mitigation of Mode-Dependent Gain in Ultra-Long-Haul SDM Systems, Darli Mello', Ruby Ospina', Hrishikesh Srinivas ² , Karthik Choutagunta ² , Elaine Chou ² , Joseph Kahn ² ; 'Univ. of Campinas, Brazil; ² Stanford Univ., USA. The effect of mode- dependent gain in ultra-long-haul optical SDM systems with coupled channels is reviewed. Simulation results indicate stringent MDG requirements for future SDM amplifiers. Challenges in MDG estimation are also addressed.		M2D.6 • 12:00 106-Gbps PAM4 Operation at an Extinction Ratio Above 3.5 dB Using a Conventional Buried- Heterostructure Directly Modulated Laser, Kosuke Shinohara', Ryosuke Miyagoshi', Yosuke Suzuki', Ryoko Suzuki', Go Sakaino', Masaaki Shimada', Keisuke Matsumoto'; ' <i>Mitsubishi Electric Corporation</i> , Japan. A 106-Gbps PAM4 operation with an extinction ratio above 3.5 dB and TDECQ values of 1.85 and 3.04 dB was demonstrated using a conventional buried-heterostructure directly modulated laser at temperatures of 25 and 55 °C. M2D.7 • 12:15 10-km Transmission of 106-Gb/s PAM4 With Di- rectly Modulated DFB Lasers in the CWDM Range, Shuhei Ohno', Masaru Onga', Takayuki Nakajima', Akira Nakanishi', Noriko Sasada', Shinichi Tanaka', Ryosuke Nakajima', Kazuhiko Naoe'; ' <i>Lumentum</i> Japan, Inc., Japan. The 106-Gb/s PAM4 operation of four DMLs in the 1.3-µm CWDM range demonstrated < 2.0 dB TDECQ after 5-km transmission. Clear eye openings and BER below KP4-FEC limit (2.2 × 10-r') were achieved even after 10-km transmission.	

12:00–13:00 OFC Mentor/Mentee Meet-up, Room 17

12:30–14:00 Lunch Break (on own)

13:30-16:30 SC114, SC217, SC408, SC459, SC485

13:30-17:30 SC261, SC325, SC327, SC347, SC357, SC393, SC431, SC451, SC453B

14:00–15:30 The Journal Review Process: All You Need to Know!, Room 14B

Room 6E	Room 6F	Room 7AB	Room 8	Room 9
M2F • Machine Learning for System Modeling and Channel Equalization—Continued	M2G • Data Center Networking and PON Security—Continued	M2H • Panel: Connectivity for Beyond 5G: How Can Wireline and Wireless Optical Access Live Up to the Mobile Expectations?— Continued	M2I • Innovative QKD Systems— Continued	M2J • Optical Computing— Continued
M2F.4 • 12:00 Improving the Bootstrap of Blind Equalizers With Variational Autoencoders, Vincent Lauinger ¹ , Fred Buchali ² , Laurent Schmalen ¹ ; ¹ Karlsruher Inst. of Technology (KIT), Germany; ² Nokia, Germany. We evaluate the start-up of blind equalizers at critical working points, analyze the advantages and obstacles of commonly-used algorithms, and demonstrate how the recently-proposed variational autoencoder(VAE) based equalizers can improve bootstrapping.	M2G.5 • 12:00 Towards Costless Temperature Monitoring Through PLOAM Information in TDMA PON Networks, Christian Salgado-Cazorla', Borja Vidal', 'Universitat Politècnica de València, Spain. Derivation of environmental temperature from FTTH networks is investigated. Ranging grants in G.984 allows estimation of average temperatures without additional hardware. This information can be valuable in smart cities and early fire warning systems		M21.6 • 12:00 Secure Unrepeated Fiber Transmission With Quantum Deliberate Signal Randomization on Y-00 Protocol, Fumio Futami', Ken Tanizawa', Ken- taro Kato', Yuki Kawaguchi', Shin Sato'', 'Tamagawa Univ., Japan; 'Sumitomo Electric Industries, Ltd., Japan. We demonstrate security-enhanced 10-Gbit's PSK Y-00 cipher transmission with deliberate signal randomization driven by a quantum random number generator in a 362 km ultra-low-loss fiber link without optical amplifiers. High security is achieved at high optical powers.	
M2F.5 • 12:15 Physics-Informed Neural Operator-Based Full Wavefield Back-Propagation for Multi-Span Optical Transmission, Yuchen Songi, Xiaotian Jiangi, Xiao Luo', XilWeng Zhangi', Min Zhangi', Danshi Wangi'; 'Beijing Univ. of Post and Telecommu, China. An unsupervised physics-informed neural operator-based wavefield back-propagation scheme is proposed and used for the full wavefield information reconstruction along the link, nonlinearity compensation (0.46 dB Q-factor gain over 1StPS DBP), and fiber parameter identification.				M2J.6 • 12:15 Incoherent Fiber-Based Optical Neuromorphic Computing Circuit, Maya Yevnin ² , Alon Harel ² , Or Arbel-Arenfrid ² , Zeev Zalevsky ¹ , Eyal Cohen ² ; ¹ Bar-Ilan Univ., Israel; ² CogniFiber LTD,, Israel. We present novel photonic neuromorphic computing scheme working with incoherent light while capable implementing negative weighting for the neural network and obtaining reliable/accurate computing of the linear multiply-accumulate function necessary for neural networks applications.

12:00–13:00 OFC Mentor/Mentee Meet-up, Room 17

12:30–14:00 Lunch Break (on own)

13:30–16:30 SC114, SC217, SC408, SC459, SC485

13:30-17:30 SC261, SC325, SC327, SC347, SC357, SC393, SC431, SC451, SC453B

14:00–15:30 The Journal Review Process: All You Need to Know!, Room 14B

Room 1AB

14:00-16:00 M3A • Symposium: Quantum Information and Optical **Communication Networks:** Emerging Research Areas, Challenges and Opportunities I Presider: Fotini Karinou: Microsoft Research Ltd, UK and Daniel Kilper;

M3A.1 • 14:00 Invited

Engineering Challenges for the Emerging Quantum Networks, Prem Kumar¹: ¹Northwestern Univ., USA, Abstract not available.

Univ. of Dublin Trinity College, USA

Room 2

14:00-16:00 M3B • Multi-Core Fiber Presider: Takashi Matsui: NTT Corporation, Japan

Unique Bending Loss Properties and Design Consideration for Coupled Multi-Core Fiber, Ryota Imada¹, Taiji Sakamoto¹, Takayoshi Mori¹, Yusuke Yamada¹, Kazuhide Nakajima¹; ¹NTT Corporation, Japan. We reveal the unique bending angle and coupled core count dependence of bending loss in a coupled multi-core fiber and demonstrate adequate core design conditions can be derived by considering the average bending loss property.

M3C.1 • 14:00 Low-Loss, High Extinction Ratio Fiber to Chip Connection via Laser Fusion for Polarization Maintaining Fibers, Sushant Kumar¹, Juniyali Nauriyal¹, Jaime Cardenas1; 1Univ. of Rochester, USA. We present a new method for PM-fiber to photonic chip connection via laser fusion. This enables low cost and robust coupling with -1.1dB loss per facet while maintaining 20dB or greater polarization extinction ratio.

M3D.1 • 14:00 Top-Scored

Sub-THz Wireless Transmission Based on Graphene on Silicon Nitride Integrated Photonics, Alberto Montanaro^{1,2}, Giulia Piccinini^{3,4}, Vaidotas Miseikis^{4,5}, Vito Sorianello¹, Marco Angelo Giambra⁶, Stefano Soresi6, Luca Giorgi7, Antonio D'Errico7, Kenji Watanabe⁸, Takashi Taniguchi⁹, Sergio Pezzini¹⁰, Camilla Coletti^{4,5}, Marco Romagnoli¹; ¹CNIT, Italy; ²Scuola Superiore Sant'Anna, Italy; 33) NEST, Scuola Normale Superiore, Italy; 4) Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Italy; ⁵Graphene Labs, Istituto Italiano di Tecnologia, Italy; ⁶Inphotec, CamGraPhIC srl, Italy; ⁷Ericsson Research, Italy; 8Research Center for Functional Materials, National Inst. for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, Japan; ⁹International Center for Materials Nanoarchitectonics, Japan; ¹⁰NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Italy. We demonstrate the first wireless transmission based on graphene, using an integrated photonic device enabling up-conversion in the sub-THz range. Our approach opens the perspective to the realization of antenna arrays based on integrated photonics.

M3D.2 • 14:15

Silicon-Based on-Chip Phase-Coded Linearly-Chirped Microwave Waveform Generation, Xu Hong¹, Bin Wang¹, Yihao Cheng¹, Weifeng Zhang¹; ¹Beijing Inst. of Technology, China. We propose and design a silicon photonic chip for phase-coded linearly-chirped microwave waveform generation based on opto-electronic oscillator. Using the chip, a phase-coded linearly-chirped microwave waveform with an ultra-large time-bandwidth product of

M3E.1 • 14:00 Tutorial Machine Learning Methods for Integrated Photonics, Stephen E. Ralph1; 1Georgia Tech, USA. This tutorial will review recent advances in machine learning techniques, including inverse design and performance monitoring, that address practical highcapacity photonics design challenges, incorporating manufacturing constraints, user defined performance

goals while ensuring end-to-end performance.

M3B.2 • 14:15

M3B.1 • 14:00

Uncoupled 6-Core Fibers With a Standard 125-um Cladding, ITU-T G.652 Optical Properties, and Low XT, Kazunori Mukasa¹, Takeshi Takagi², Takaaki Shishikura², Katsuhisa Maruyma², Hajime Oshio², Aditi Mehta³, Karsten Rottwitt³, Toshio Morioka³; ¹Furukawa Electric Co., Ltd., Japan; ²Furukawa Electric Co., Ltd., Japan: ³Technical Univ. of Denmark, Denmark, We developed ultra-high-density uncoupled 6-core fibers with a standard 125-um cladding, G.652 properties, and low crosstalk at 100 km of -55~-39 dB by utilizing a novel air-gap structure, which would potentially give the ultimate high-density.

M3C.2 • 14:15 Top-Scored Automatic Setting of Multiple FSO Orthogonal **Communication Channels Between Photonic** Chips, Sevedmohammad Sevedinnavadeh¹, Mazivar Milanizadeh², Francesco Zanetto¹, Vittorio Grimaldi¹, Christian De Vita¹, Giorgio Ferrari¹, David A. Miller³, Andrea Melloni¹, Francesco Morichetti¹; ¹Politecnico di Milano, Italy: ²National Research Council Canada, Canada; ³Stanford Univ., USA. Multiple orthogonal free-space optical (FSO) communication channels are automatically established between photonic chips hosting programmable integrated processors. All-optical channel demultiplexing is achieved with a crosstalk < -30 dB even after co-propagation though arbitrary mode mixers.

1.96×10⁶ is experimentally demonstrated.

Room 3

M3C • Free Space and Coupling

Presider: Stefano Camatel: Finisar

Corporation, Australia

14:00-16:00

Devices

Room 6C

14:00-16:00 M3D • RF and THz Signal Generation Presider: Tetsuya Kawanishi; Waseda Univ., Japan

Room 6D

14:00-16:00 M3E • Enabling Technologies for Data Center and HPC Presider: Robert Borkowski: Nokia Bell Labs, USA

OFC 2023 • 05–09 March 2023

Room 6E	Room 6F	Room 7AB	Room 8	Room 9
14:00–16:00 M3F • LIDAR, RADAR and Ranging Systems Presider: Baris Erkmen; Google LLC, USA	14:00–16:00 M3G • Telemetry and Synchronisation Presider: Konstantinos (Kostas) Christodoulopoulos; Univ. of Athens, Greece	14:00–16:00 M3H • Panel: Optical Fiber Sensing: Technology and Emerging Applications Part I Organizers: Raja Ahmad, Cisco Systems, USA; Mikael Mazur, Nokia Bell Labs, USA; Georg Radem- acher, NICT, Japan; Ting Wang, NEC Laboratories America, USA	14:00–16:00 M3I • Monolithic or 3D Electro- Optical Integration Presider: Long Chen; Cisco Systems Inc, USA	14:00–16:00 M3J • Accurate Frequency/ Time Distribution and Optical Computing Presider: Radan Slavik; Univ. of Southampton, UK
M3F.1 • 14:00 A Hybrid Solid-State Beam Scanner for FMCW LiDAR Application, Zhaoyang Zhang ¹ , Xufeng Du ² , Zhiyan Zhou ¹ , Qikai Huang ¹ , Qiang Zhang ³ , Tingge Dai ¹ , Hui Yu ¹ , Yuehai Wang ¹ , Jianyi Yang ¹ ; 'Zhejiang Univ, China; ² Guofeng Electronics, China; ² Zhejiang Lab, China. We demonstrate a hybrid solid-state beam scanner based on a Si ₃ N ₄ switching array. Two- dimensional beam steering with a 14.3° × 9.9° field of view and FMCW ranging operation at a distance of 7.4 m are achieved.	M3G.1 • 14:00 An Intelligent Optical Telemetry Architecture, Luis Velasco ¹ , Pol Gonzalez ¹ , Marc Ruiz ¹ ; ¹ Universi- tat Politecnica de Catalunya, Spain. A distributed telemetry system is proposed with agents receiving and analyzing data before sending to a centralized manager. Intelligent data aggregation on optical constellations telemetry largely reduces data rate without introducing significant error.	Speakers: Dan Bluhmental, University of California, Santa Barbara, USA; Pierepaolo Boffi, Politecnico di Milano, Italy; Lea Bouffant, Cornell University, USA; Miguel Gonzalez-Herraez, Universidad de Alcala, Spain; Leo Hollberg, Stanford University, USA; Paul Ohodnicki, University of Pittsburgh, USA; Charlotte Rowe, Los Alamos National Laboratory, USA; Hiroshi Takahashi, Nippon Telegraph and Telephone Corpora- tion, Japan; Paul Westbrook, OFS Labs, USA Description: This session focuses on broadening the perspective of fiber sensing using telecom compo- nents and networks to advance fields outside telecom. The panel consists of speakers representing different	M3I.1 • 14:00 Ultra-Dense 3D Integrated 5.3 Tb/s/mm ² 80 Micro-Disk Modulator Transmitter, Stuart R. Daudlin ¹ , Sunwoo Lee ² , Devesh Khilwani ² , Christine Ou ² , Anthony Rizzo ¹ , Songli Wang ¹ , Michael Cullen ¹ , Alyosha Molna ² , Keren Bergman ¹ ; ¹ Columbia Univ, USA; ² Cornell Univ, USA.A large-scale array of 80 micro-disk modulators is densely bonded to an electronic chip and driven at 10 Gb/s/modulator for an unprecedented 5.3 Tb/s/mm ² bandwidth density and 50 fJ/bit energy consumption.	M3J.1 • 14:00 Invited Frequency Combs Outside the Metrology Lab: Time Transfer Over Long Distance Terrestrial Links, Laura C. Sinclair ¹ , Emily D. Caldwell ^{1,2} , Benjamin K. Stuhl ³ , William C. Swann ¹ , Nathan R. Newbury ¹ , Jean-Daniel Deschenes ⁴ , ¹ National Inst of Standards & Technol- ogy, USA; ² Department of Electrical, Energy and Computer Engineering, Univ. of Colorado Boulder, USA; ² Space Dynamics Laboratory, USA; ⁴ OctoSig Consulting, Canada. Future clock networks will require femtosecond-level time distribution for applications ranging from fundamental physics tests to distributed

scientific areas and aims at creating a discussion forum

for how telecom networks can further be utilized.

M3F.2 • 14:15

Enhanced Velocity Sensitivity in 4-D FMCW LiDAR by Use of Avalanche Photodiode With Cascaded Multiplication Layer, Zohauddin Ahmad¹, Sung-Yi Ou^{1,4}, Wei-Chih Su², Po-Shun Wang¹, None Naseem¹, Jyehong Chen³, Yung-Jr Hung⁴, You-Chia Chang³, Chia-Chien Wei⁴, Tzyy-Sheng Horng², Jin-Wei Shi¹; ¹National Central Univ., Taiwan; ²Department of Electrical Engineering, National Sun Yat-sen Univ., Taiwan; ³Department of Photonics, National Yang Ming Chiao Tung Univ., Taiwan; ⁴Department of Photonics, National Sun Yat-Sen Univ., Taiwan, A 4-D FMCW LiDAR is demonstrated. In comparison to the traditional p-i-n PD in its receiver-side, the cascaded M-layers APDs provide a better quality of 4-D images with unprecedented high velocity-sensitivity (5µm/ sec) for slow-moving objects.

M3G.2 • 14:15 Invited

Telemetry Framework With Data Sovereignty Features, Behnam Shariati', Haydar Qarawlus², Steffen Biehs², José-Juan Pedreño-Manresa³, Pooyan Safari', Mihail Balanici', Ayoub Bouchedoub², Hendrik Haße², Achim Autenrieth³, Johannes Karl Fischer¹, Ronald Freund'; 'Fraunhofer Isst, Nachricht Henrich-Hertz, Germany; 'Fraunhofer ISST, Germany; ³ADVA Optical Networking, Germany. We propose a novel framework that enables data ecosystem and regulated telemetry streaming in open and disaggregated optical networks. We review its requirements, present its architecture, and discuss two demonstrated usecases in our testheds. M3I.2 • 14:15

Monolithically Integrated Autonomous Demultiplexers With Near Zero Power Consumption for Beyond Tb/s Links, Ali Pirmoradi¹, Firooz Aflatouni¹; ¹Univ. of Pennsylvania, USA.Integrated multiplexer/ de-multiplexer systems based on capacitively tuned MZI and adiabatic ring resonators with sequential tuning and wavelength locking are presented. Monday, 6 March

coherent sensing. We present a quantum-limited

comb-based time transfer approach and results on

clock synchronization over ultra-long distances.

Room 1AB	Room 2	Room 3	Room 6C	Room 6D
M3A • Symposium: Quantum Information and Optical Communication Networks: Emerging Research Areas, Challenges and Opportunities I— Continued	M3B • Multi-Core Fiber— Continued	M3C • Free Space and Coupling Devices—Continued	M3D • RF and THz Signal Generation—Continued	M3E • Enabling Technologies for Data Center and HPC—Continued
M3A.2 • 14:30 Invited Building a Dynamic Quantum Network: Use Cases and Challenges From Security to Scalable Quantum Computing, Reza Nejabati'; 'Univ. of Bristol, UK. Abstract not available.	M3B.3 • 14:30 Invited MCF Manufacturing, Kazunori Mukasa'; 'Furukawa Electric Co., Ltd., Japan. To actually apply MCFs in the real systems, we still have several challenges to overcome. One of them is the MCF manufacturing technology including measurements and we will describe the current situations and future prospective.	M3C.3 • 14:30 Monolithically Integrated Self-Aligned SiN Edge Coupler With <0.6/0.8 dB TE/TM Insertion Loss, <-39 dB Back Reflection and >520 mW High-Power Handling Capability, Yusheng Bian'; 'GLOBALFOUNDRIES, USA. We experimentally demonstrated V-groove-based self-aligned SiN edge coupler (EC) on a monolithic CMOS-SiPh platform. <0.6/0.8 dB TE/TM SMF-EC transmission efficiency, in conjunction with <-39 dB back reflection and >520 mW power handling capability were achieved.	M3D.3 • 14:30 Invited Piezo-Optomechanical Technologies for RF and Optical Communications, Matt Eichenfield ¹ ; 'Sandia National Laboratories Albuquerque, USA. Abstract not available.	
		M3C.4 • 14:45 Top-Scored Free-Space Signal Transmission Using Optical		

Beam Scanning Device Incorporating Broadband Silicon Surface Optical Couplers, Yuki Atsumi', Tomoya Yoshida', Ryosuke Matsumoto', Ryotaro Konoike', Youichi Sakakibara', Takashi Inoue', Keijiro Suzuki'; 'Ivati Inst of Adv Industrial Sci & Tech, Japan. Characteristics of beam scanning device based on a broadband silicon vertically-curved-waveguide surface optical couplers are evaluated. We then demonstrate free-space transmission of 10-Gbps NRZ-OOK signals in the wide wavelength range from

M3A.3 • 15:00 Invited

Multi-Photon Entanglement in Quantum Networks; Sophia Economou, Virginia Tech, USA. This talk will give a background on entangled photonic states for quantum repeaters. We will focus on logical encoding of photonic states that protects against loss and on protocols for the generation of such states.

M3B.4 • 15:00

Relationship Between Polarization Mode Dispersion and Crosstalk in Heterogeneous Multi-Core Fibers With Different Cladding Diameters, Gustavo Ocampo', Takanori Sato', Takeshi Fujisawa', Mayu Nakagawa², Kunimasa Saitoh'; *'Hokkaido Unix, Japan;* ²Fujikura Ltd., Japan. We experimentally investigate the relationship between crosstalk and polarization mode dispersion (PMD) in two heterogeneous multi-core fibers with different cladding diameters. We observed that increasing the cladding diameters improves the crosstalk, but deteriorates the PMD.

M3C.5 • 15:00

1530 to 1590 nm

LCOS Based Flexible Spatial Channel Switch for Heterogeneous SDM Fiber Network, Yuta Goto', Satoshi Shinada', Yusuke Hirota', Hideaki Furukawa', *'NICT, Japan.* We propose an LCOS based flexible spatial channel switch for a heterogeneous SDM fiber network which can easily connect different types of SDM fibers without FIFO. The switching operation was confirmed by measuring OSNR and BER characteristics.

M3D.4 • 15:00 Top-Scored

Demonstration of Optoelectronic-Phased-Array Driven THz-Wave Power Combination and Beam Steering, Ming Che¹, Kazuya Kondo¹, Ryo Doi¹, Kazutoshi Kato¹; ¹Kyushu Univ, Japan. We developed an 8-channel photonic phased array for phases tuning of THz waves generated from 8 arrayed InP/InGA& UTC-PDs. 300-GHz-waves are combined with 16-dB gain and steered continuously in a range of ±50°.

M3E.2 • 15:00

Nonlinearity Free Operation of SOA for Use in High-Capacity Co-Packaged Optics, Takayuki Kurosu', Satoshi Suda', Shu Namiki', Takeru Amano'; 'Natl Inst of Adv Industrial Sci & Tech, Japan. We propose a novel concept to generate high-capacity WDM signals from single source of non-mode-locked multi-wavelength light using SOAs. Using micro-ring modulators in a way to suppress SOA nonlinearity, high-quality PAMA signals can be generated.

Room 6E	Room 6F	Room 7AB	Room 8	Room 9
M3F • LIDAR, RADAR and Ranging Systems—Continued	M3G • Telemetry and Synchronisation—Continued	M3H • Panel: Optical Fiber Sensing: Technology and Emerging Applications Part I—Continued	M3I • Monolithic or 3D Electro- Optical Integration—Continued	M3J • Accurate Frequency/ Time Distribution and Optical Computing—Continued
M3F.3 • 14:30 Impact of Laser Phase Noise on Ranging Preci- sion Within and Beyond Laser Coherence Length in FMCW LiDAR, Wenting Yi ¹ , Zichuan Zhou ¹ , Zhixin Liu ¹ , Polina Bayvel ¹ , Robert I. Killey ¹ ; ¹ Univ. College London, UK. We study the impact of laser phase noise on ranging precision in a frequency- modulated continuous-wave (FMCW) LiDAR system, demonstrating ranging of 384.72 m with ~15 cm precision at 7× intrinsic laser coherence length.			M3I.3 • 14:30 First 100 Gb/s Monolithically Integrated Electronic- Photonic Coherent Receiver With Direct Edge Coupling to Standard Single Mode Fiber Array, Ahmed Osman ¹ , Georg Winzer ² , Christian Mai ² , Anna Peczek ² , Karsten Voigt ² , William Dorward ³ , Stefan Lischke ² , Mesut Inac ² , Andrea Malignaggi ² , Lars Zimmermann ² , Ilias Sourikopoulos ¹ , Leontios Stampoulidis ¹ ; 'LEO Space Photonics, Greece; 'IHP GmbH, Germany; ³ ALTER Technology UK, UK. We report fabrication, assembly and testing of the first >100 Gb/s monolithic electronic-photonic coherent receiver chip and sub-assembly, edge coupled to standard single mode fiber array.	M3J.2 • 14:30 Invited Optical Clock Distribution Over Stable Fiber Links in Noisy Environments, Tomoya Akatsuka ¹ , Hiromitsu Imai ¹ , Masao Takamoto ⁵ , Hidetoshi Katori ²³ , Takashi Goh ⁴ , Toshikazu Hashimoto ⁵ , Hidetoshi Katori ²³ , Xat- suya Oguri ¹ , Tetsuomi Sogawa ⁶ ; ¹ NTT Basic Research Laboratories, Japan; ² RIKEN, Japan; ² The Univ. of Tokyo, Japan; ⁴ NITT Device Innovation Center, Japan; ⁸ NTT Device Technology Laboratories, Japan; ¹ NTT Science and Core Technology Laboratory Group, Japan. We demonstrate a 190-km-long optical fiber link that achieves high-stability frequency transfer in noisy environments. A four-stage cascaded link with ultralow-noise laser repeater stations connects
M3F.4 • 14:45 Experimental Demonstration of 0.4-Meter Rang- ing Through Underwater Scattering With 20-mm Resolution Using z-Dependent Angular Rotation of a Spatially Structured Beam, Hao Song', Huibin Zhou', Yuxiang Duan', Zile Jiang', Murale Ramak- rishnan', Wing Ko', Yingning Wang', Xinzhou Su', Kaiheng Zou', Abdurahman Alhadda'l, Ruoyu Zeng', Robert Bock', Moshe Tur ³ , Alan Willner'; 'Univ. of Southern California, USA; ² R-DEX System, Inc., USA; ³ Tel Aviv Univ., Israel. We experimentally demonstrate a 0.4-meter underwater optical ranging with a 20-mm resolution through underwater scattering (extinction coefficient Y up to 9.4 m-1) utilizing the z-dependent angular rotation of a spatially structured beam.	M3G.3 • 14:45 Data Augmentation to Reduce Computational Complexity of Neural-Network-Based Soft-Failure Cause Identifier, Lareb Zar Khan ¹ , Pedro J. Freire ² , João Pedro ³ , Nelson Costa ³ , Antonio Napoli ¹ , Nicola Sambo ¹ ; ¹ Scuola Superiore SantAnna, Italy; ² Aston Univ., UK; ³ Infinera, Portugal; ⁴ Infinera, Germany. We investigated data augmentation to train neural networks (NNs) for soft-failure cause identification, demonstrating its impacts on NN complexity. Results indicate up to 68% reduction in the computational complexity of NN for each inference.		M3I.4 • 14:45 A Direct Bond Interconnect 3D Co-Integrated Silicon-Photonic Transceiver in 12nm FinFET With -00.3dBm OMA Sensitivity and 691fJ/bit, Anirban Samanta', Po-Hsuan Chang', Peng Yan ² , Mingye Fu ¹ , Mehmet Berkay On', Ankur Kumar ² , Hyungryul Kang ² , II-Min Yi ² , Dedeepya Annabattuni ² , Yu Zhang ¹ , David Scott ³ , Robert Patti ⁴ , Yang-Hang Fan ² , Yuanming Zhu ² , Samuel Palermo ² , S. J. Ben Yoo'; 'Department of Electrical and Computer Engineering, Univ. of California, Davis, USA; 'Analog & Mixed-Signal Center, Texas A&M Univ., USA; ³ Optelligent, USA; 'Nhanced Semiconductors, USA. We present he first experimental demonstration of an electronic-photonic co-designed transceiver circuit heterogeneously 3D co-integrated with high-density, low-parasitic Direct Bond Interconnect (DBI®) featuring full SerDes that achieves -20.3dBm OMA sensitivity and 691fJ/bit link energy efficiency.	distant optical lattice clocks without deteriorating their stabilities.
M3E5 • 15:00 Invited	M3G.4 • 15:00		M315 • 15.00 Tutorial	M3J.3 • 15:00

M3F.5 • 15:00 Invited Coherent LIDAR Technology: Practical Deployment

and Challenges, Shuren Hu¹; ¹Vanderbilt Univ., USA. Abstract not available.

M3G.4 • 15:00

Failure Data Augmentation for Optical Network Equipment Using Time-Series Generative Adversarial Networks, Cheng Xing¹, Chunyu Zhang¹, Bing Ye², Danshi Wang¹, Yinqiu Jia³, Jin Li¹, Min Zhang¹; IBeijing Univ. of Posts and Telecommunications, China; ²State Key Laboratory of Mobile Network and Mobile Multimedia Technology, Shenzhen, 518055, China, China; ³State Key Laboratory of Mobile Network and Mobile Multimedia Technology, Shenzhen, 518055, China, China. We propose a failure data augmentation scheme based on time-series generation adversarial networks with real equipment performance data of optical networks and verify that the augmented failure sample data is similar to real failure data.

M3I.5 • 15:00 Tutorial

Tradeoffs in the Paths Forward for Advanced Packaging in Photonics, Jon Aday'; 'Amkor Technology, USA. Advanced semiconductor packaging is currently being used to support products that utilize photonics connections, but as we migrate from a wire bonded solution to flip chip the complexity increases dramatically. The fiber coupling methods will also impact the process flows and package structures that can be implemented. The tradeoffs will be reviewed between the coupling methods and semiconductor packaging options as we migrate from pluggables to co-packaged optics.

M3J.3 • 15:00

Optical Frequency Transfer Stability of 1E-15 at 1 Second Over Correlated Core Pairs in a 40 km 7-Core Fiber Link, Mark W. Harrington¹, Nicolas K. Fontaine², Mikael Mazur², Daniel J. Blumenthal¹; ¹UCSB, USA;²Nokia Bell Labs, USA. We demonstrate a 40km stabilized optical frequency transfer system with fractional frequency stability of 1e-15 at 1s without single-core bidirectional propagation. Highly correlated cores of a 7-core fiber are used for signal transmission and return, mitigating uncorrelated phase fluctuations found in duplex approaches.

Room 1AB	Room 2	Room 3	Room 6C	Room 6D
M3A • Symposium: Quantum Information and Optical Communication Networks: Emerging Research Areas, Challenges and Opportunities I— Continued	M3B • Multi-Core Fiber— Continued	M3C • Free Space and Coupling Devices—Continued	M3D • RF and THz Signal Generation—Continued	M3E • Enabling Technologies for Data Center and HPC—Continued
	M3B.5 • 15:15 Characteristics of Over 600-km-Long 4-Core MCF Drawn From a Single Preform, Shota Kajikawa', Tsubasa Saito', Katsuhiro Takenaga', Kentaro Ichii', <i>'Fujikura Ltd., Japan</i> . This report presents details of the successful production of a 4-core MCF, with 125-µm cladding and a length greater than 600 km. This is the champion data for MCF length drawn from a single preform.	M3C.6 • 15:15 Automated Assembly of 500-Count, Laser-Welded, Fiber- Optic Arrays at Density Limit, John R. Marciante ¹ , Per Adamson ¹ , Robert Balonek ¹ , Mike Cinquino ¹ , Joey Lawson ¹ , Jordan Leidner ¹ ; ¹ RAM Photonics Industrial, LLC, USA. We have developed a new technique for high-count fiber array connector production. Fully automated manufacturing was demonstrated for 500-count arrays with 250µm center-to-center spacing and sub-micron placement for arbitrary fiber type in any 2D configuration.	M3D.5 • 15:15 All-Optical sub-THz Signal Generation Using Two Mutually Coupled Semiconductor Lasers, Chin- Hao Tseng ¹ , Bin-Kai Liao ¹ , Sheng-Kwang Hwang ^{1,2} ; ¹ Department of Photonics, National Cheng Kung Univ., Taiwan; ² Advanced Optoelectronic Technology Center, National Cheng Kung Univ., Taiwan. This study proposes a novel all-optical approach for sub-THz signal generation. Sub-THz signals ranging from 100 to 300 GHz with a 3-dB linewidth below 2 kHz and a SPSR of about 47 dB are generated.	M3E.3 • 15:15 Top-Scored Self-Homodyne Coherent Transmission With All-Optical Clock Synchronization for DSP-Free Co-Packaged Optics, Ming-Ming Zhang ¹ , Weihao Li ¹ , Yizhao Chen ² , Zihe Hu ¹ , Ming Tang ¹ ; 'OEI, HUST, China; '2CSE, HUST, China. Utilizing the all-optical clock delivery and synchronization, we successfully achieved baud-rate sampled 40-Gbaud DP-16QAM self-homodyne transmission with 1.92 Tbps aggregated capacity over 3.5-km MCF, yielding a promising solution for the DSP-free coherent co- packaged optics.
M3A.4 • 15:30 Invited Photonic Quantum Computing; Ulrik Andersen, Danmarks Tekniske Universitet, Denmark. Abstract not available.	M3B.6 • 15:30 Invited Optical Link Characteristics and Long-Term Stability of High-Density Multi-Core Fiber Cables Deployed in the Terrestrial Field, Yusuke Yamada', Takayoshi Mori', Takashi Matsui', Masashi Kikuchi', Kazuhide Nakajima'; <i>'NTT Corporation, Japan.</i> The feasibility of a standard 125-µm-cladding multi-core-fiber-based high-density terrestrial cable is described including long-term stability in an underground facility. The impact of a core-rotating splice on the link loss is also investigated.	M3C.7 • 15:30 Fan-in/Fan-out for Heterogeneous 19-Core Fibers Based on Metasurfaces With Nonuniform Phase Plates, Yang Wang', Xutao Wang', Zhiqun Yang', Yaping Liu', Lin Zhang'², Zhanhua Huang'; 'Tianjin Univ,, China; 'Peng Cheng Laboratory, China. We propose a metasurface-based fan-in/fan-out device for heterogeneous 19-core fibers. Our results indicate that an average insertion loss of 0.9 dB and maximum crosstalk of -25.5 dB can be achieved at 1550 nm.	M3D.6 • 15:30 Top-Scored Optical Synchronization of a Photonic Crystal Reso- nator to a 10 GHz Chip-Scale Mode-Locked Laser PIC, Chinmay D. Shirpurkar ¹ , Jizhao Zang ² , David Carlson ² , Travis Briles ² , Scott Papp ² , Peter Delfyett ¹ ; 'CREOL, The College of Optics & Photonics, USA; ² Time and Frequency Division, National Inst. of Stan- dards and Technology, USA. We present an optical frequency division technique to transfer the timing stability of a stabilized Photonic Crystal Resonator Comb (~200 GHz repetition rate) to a chip-scaled mode-locked laser (~10 GHz repetition rate).	M3E.4 • 15:30 Sub-ms Data Recovery at 1,000-Port Scale Opti- cal Switch Developed With Customized Practical Devices, Osamu Moriwaki', Kazushige Yonenaga', Satoshi Ide', Noboru Takachio', Hiroshi Onaka', Kenya Suzuki'; 'Photonics Electronics Technology Research Association, Japan. We have successfully demonstrated a large optical switching system with short switching times. Our transient time optimized digital coherent DSP, wavelength tunable laser, and silica-based PLC switch are the key components of the system.
		M3C.8 • 15:45 High-Resolution Radiation Characterization for an Uniformly Emitted SiNx Nanophotonic Phased Array, Caiming Sun ¹ , Binghui Li ¹ , Ning Ding ¹ , Aidong Zhang ¹ ; 'CUHK Shenzhen, China. With a high-resolution characterization setup, waveguide modes are clearly observed in near-field radiation patterns of SiNx nano-antennas. This phased array has uniform emission throughout the antenna within 3dB bandwidth of 120 nm from 785-905 nm.	M3D.7 • 15:45 Conversion Gain Enhancement of a UTC-PD- Integrated HEMT Photonic Double-Mixer by High- Intensity Optical Subcarrier Signal, Dai Nakajima', Kasuki Nishimura', Mitsuki Watanabe', Tsung-Tse Lin', Keisuke Kasai', Masato Yoshida', Tetsuya Suemitsu ² , Talichi Otsuji', Akira Satou'; <i>'RIEC, Tohoku Univ., Ja-</i> <i>pan;</i> ² NICHe, Tohoku Unversity, Japan. We investigate the effectiveness of high-intensity subcarrier signal input to the UTC-PD-integrated HEMT for optical- to-wireless carrier frequency down-conversion and report that the conversion gain increased linearly from -51 dB to -44 dB.	M3E.5 • 15:45 Optical Clock Synchronization for O-Band Directly Modulated Laser Based Data Center Intercon- nection, Zichuan Zhou', Kari Clark', Ashish Verma ² , Yasuhiro Matsu ² , Zhixin Liu'; 'Univ. College London, UK; ² Coherent Incorporated, USA. We show that clock synchronized transmission has reduced receiver-side jitter that limits DMLs' performance compared to conventional clock and data recovery. We access transmission quality using 35-GHz-bandwidth DMLs at 1271 and 1373 nm.

Room 6E

Room 6F

Room 8

M3F • LIDAR, RADAR and Ranging Systems—Continued M3G • Telemetry and Synchronisation—Continued

M3G.5 • 15:15

Optical Network Diagnostics Using Graph Neural Networks and Natural Language Processing, Xiaonan Xu¹, Haoshuo Chen¹, Jesse Simsarian¹, Roland Ryf¹, Mikael Mazur¹, Lauren Dallachiesa¹, Nicolas K. Fontaine¹, David Neilson¹; ¹Nokia Bell Labs, USA. We propose an Al-powered network diagnostic strategy including alarm clustering and fault localization with >98% accuracy for up-to 16-degree ROADMs and demonstrate the advantages of using NLP in encoding.

M3F.6 • 15:30

Coherent LiDAR Prototype Based on 2D MEMS Mirror Scanning, Sarah Cwalina¹, Christoph Kottke¹, Norman Laske², Volker Jungnickel¹, Ronald Freund¹; 'Fraunhofer Heinrich Hertz Inst, Germany; ²Fraunhofer Inst. for Silicon Technology, Germany. We present a new coherent LiDAR prototype with two-dimensional micro-electro-mechanical-system scanning and walk-off mitigation capability. We address the linearization challenge of the FMCW transmitter, the scan-capture-synchronization and provide point-clouds of two distinct objects.

M3F.7 • 15:45

Electro-Optical Phase-Locked Loop for Hybrid Integrated External Cavity Laser, Chuxin Liu¹, Yuyao Guo¹, Ruiyang Xu¹, Lianging Lhu¹, Linjie Zhou¹, Jianping Chen¹; 'Shanghai Jiao Tong Univ., China. We implement an analog EO-PLL for a III/V-Si₃N₄ hybrid integrated ECL to generate a highly-linear FMCW signal over multiple wavelengths. The ranging resolution is improved from 5 m to 22 cm for a 100-m target. M3G.6 • 15:30 🗙 Top-Scored

Automation of Fast Configuration Error Diagnosis in Optical Transport Networks - Natural Language Processing is All You Need, Cen Wang¹, Noboru Yoshikane¹, Daniel J. Elson¹, Takehiro Tsuritani¹; Photonic Transport Network Laboratory, KDDI Research, Inc., Japan. We train language models to automate the diagnostic accuracy is up to 97.56%. We additionally demonstrate the effectiveness of the models on a real OTN system.

M3G.7 • 15:45

Experimental Demonstration of Integrated Low-Cost High-Precision Timing Solution for Optical Transport Networks Supporting 5G, Ekin Arabul¹, Romerson Oliveira¹, Rui Wang¹, Reza Nejabati¹, Dimitra E. Simeonidou¹; ¹Univ. of Bristol, UK. We successfully integrated FPGA-based low-cost highprecision timing scheme into an optical transport network solution. 16.2 ps synchronisation precision has been achieved across two devices while networkwise setup can sustain up to 21.2 ps precision. M3H • Panel: Optical Fiber Sensing: Technology and Emerging Applications Part I—Continued M3I • Monolithic or 3D Electro-Optical Integration—Continued

M3I.5 • 15:00 Tutorial

Tradeoffs in the Paths Forward for Advanced Packaging in Photonics, Jon Aday'; 'Amkor Technology, USA. Advanced semiconductor packaging is currently being used to support products that utilize photonics connections, but as we migrate from a wire bonded solution to flip chip the complexity increases dramatically. The fiber coupling methods will also impact the process flows and package structures that can be implemented. The tradeoffs will be reviewed between the coupling methods and semiconductor packaging options as we migrate from pluggables to co-packaged optics.

M3J.4 • 15:15

Calculating With Phase Opens up the High-Precision and High-Reconfigurability Integrated Photonic Computing, Yuepeng Wu¹, Hongxiang Guo¹, Bowen Zhang¹, Ran Tao¹, Yi Guo¹, Tian Zhang¹, Jifang Ciu¹, Jian Wu¹; ¹School of Electronic Engineering, Beijing Univ. of Posts and Telecommunications, China. We propose and experimentally demonstrate a novel phase-based optical computing system integrated with photonic AD/DA converters. Further simulation shows that our system can perform 15-bit arithmetic operations when the SNR is around 34 dB.

Room 9

M3J • Accurate Frequency/

Time Distribution and Optical Computing—Continued

M3J.5 • 15:30

Fully Integrated Silicon Photonic Tensor Core for Next-Generation Applications, Nicola Peserico¹, Xiaoxuan Ma¹, Ahmed Khaled², Zhimu Gou², Bhavin J. Shastri², Volker J. Sorger¹; 'George Washington Univ, USA; ²Queens Univ, Canada. Here we present our architecture for Silicon Photonic Tensor Core, capable of responding to the needs of Neural Networks, Augmented and Virtual Reality applications. We present a novel version fully integrated, from lasers to photodetectors.

M3J.6 • 15:45 Top-Scored

WDM-Compatible Integrated Photonic Computing Core for Implementing a Neural Network, Zhenyu Zhao', Shuang Zheng', Weifeng Zhang'; 'Beijing Inst. of Technology, China. We propose and design an energy-efficient integrated photonic computing core by using a microdisk resonator-assisted Mach-Zehnder interferometer. With the use of the fabricated silicon photonic chip, an optical convolutional neural network for image classification is experimentally demonstrated.

M3Z.1

Adaptive Geometric Constellation Shaping in a Transmission System With a Real-Time Optimisation Loop, Mindaugas Jarmolovicius¹, Anastasiia Vasylchenkova¹, Eric Sillekens¹; ¹Univ. College London, UK. We demonstrate the real-time performance of an adaptive intelligent transceiver, tailoring the constellation shape to the transmission system by iteratively maximising the information throughput, guantified by the GMI.

M3Z.2

Optical Network Tomography: Demonstration of Anomaly Loss Monitoring and Fiber-Type Identification, Ryu Shinzaki¹ Motohiko Eto¹, Kazuyuki Tajima¹, Kyosuke Sone¹, Setsuo Yoshida¹, Shoichiro Oda¹, Inwoong Kim², Olga Vassilieva², Paparao Palacharla², Takeshi Hoshida¹; ¹Fujitsu Limited, Japan; ²Fujitsu Network Communications, Inc., USA. We demonstrate optical network tomography software prototype for localization of anomaly loss and fibertype identification based on the estimated optical power profile using experimentally measured waveform data in a multi-span transmission testbed.

M3Z.3

Demonstration of Data-Sovereign Telemetry Broker for Open and Disaggregated Optical Networks, Haydar Qarawlus¹, Steffen Biehs¹, Behnam Shariati², José-Juan Pedreño-Manresa³, Ayoub Bouchedoub¹, Hendrik Haße¹, Pooyan Safari², Achim Autenrieth³, Johannes Karl Fischer²; ¹Fraunhofer ISST, Germany; ²Fraunhofer HHI, Germany; ³ADVA Optical Networking, Germany. We demonstrate a novel and modular telemetry broker that allows remote collection and exchange of telemetry data. Our proposal enforces data sovereignty principles powered by International Data Spaces components and enables unprecedented data ownership control.

Distributed Architecture Supporting

Intelligent Optical Measurement Aggregation and Streaming Event Telemetry, Pol Gonzalez¹, Ramon Casellas², José-Juan Pedreño-Manresa³, Achim Autenrieth³, Fabien Boitier⁴, Behnam Shariati⁵, Johannes Karl Fischer⁵, Marc Ruiz¹, Jaume Comellas¹, Luis Velasco¹; ¹Universitat Politecnica de Catalunya, Spain; ²CTTC, Spain; ³ADVA, Germany; ⁴Nokia, France; ⁵HHI, Germany. A distributed telemetry system integrating optical measurement and event data collection is demonstrated. Measurements of optical spectra from Nokia Bell Labs, of optical transponders from ADVA and SDN controller events from CTTC will be showcased.

M3Z.5

M3Z.4

Distribution of Quantum Entanglement Through Fiber With co-Propagating Classical Data, Daniel Reilly¹, Kim Lee¹, Paul Moraw¹, Tim Rambo², Aaron Miller², Joe Mambretti³, Prem Kumar³, Gregory S. Kanter1; 1NuCrypt, USA; 2Quantum Opus, USA; ³Northwestern Univ., USA. A complete system for distributing guantum entangled signals over fiber based on commercially available equipment will be demonstrated. Measurements are collected and controlled from a single location using an embedded optical data link.

M3Z.6

Detection of Abnormal Activities on a SM or MM Fiber, Stefan Karlsson¹, Mikael Andersson³, Rui Lin², Lena Wosinska², Paolo Monti²; ¹FMV, Sweden; ²Electrical Engineering, Chalmers Univ. of Technology, Sweden; 3Micropol Fiberoptics AB, Sweden. We demonstrate eavesdrop detection based on polarization signatures by analyzing polarization state changes at the receiver. We identify changes related to the normal operation and the ones caused by eavesdropping.

M3Z.7

Live Demonstration of ML-Based PON Characterization and Monitoring, Maximilian Brügge¹, Jasper Müller¹, Sai Kireet Patri¹, Sander Jansen¹, Jim Zou¹, Stephanie Althoff², Klaus-Tycho Förster²; ¹ADVA Optical Networking SE, Germany; ²Technical Univ. of Dortmund, Germany. We demonstrate a machine learningbased solution for optical time-domain reflectometry devices which can assist in the classification and monitoring of reflective events in a passive optical network.

M3Z.8

Open Disaggregated Optical Network Control With Network Management as

Code, Javier Errea¹, Huy Q. Tran¹, Dominique Verchere¹, Trung H. Thieu², Andrea Mazzini³, Lahcen Abnaou⁴, Jelena Pesic⁴, Marina Curtol⁴, Abdelali El Imadi⁴, Adlen Ksentini⁵, Djamal Zeghlache⁶; ¹Nokia Bell Labs, France; ²Nokia Bell Labs, USA; ³Nokia, Italy; ⁴Nokia, France; ⁵Communication Systems, EURECOM, France; 6Telecom SudParis, France. Network Management as Code is presented to manage the infrastructure and deployment of control functions in a declarative manner by adopting GitOps in open disaggregated optical networks. We introduce an Automation Engine that analyzes topology changes to trigger the Continuous Delivery procedure of SDN applications on a micro-service architecture.

M3Z.9

Slice Grouping for Transport Network Slices Using Hierarchical Multi-Domain SDN Controllers, Lluis Gifre¹, Ricard Vilalta¹, Juan Carlos Caja-Diaz², Oscar Gonzalez de Dios², Juan Pedro Fernandez-Palacios², José-Juan Pedreño-Manresa³, Achim Autenrieth³, Mika Silvola⁴, Nicola Carapellese⁵, Michele Milano⁵, Adrian Farrel⁶, Daniel King⁶, Ricardo Martínez¹, Ramon Casellas¹, Raul Muñoz¹; ¹CTTC, Spain; ²Telefónica I+D, Spain; ³ADVA Optical Networking, Germany; ⁴Infinera, Finland; ⁵Siae Microelettronica, Italy; ⁶Old Dog Consulting, UK. This demonstration showcases how TeraFlowSDN provides support for hierarchical control of multiple heterogeneous SDN domains (through IP, microwave and optical technologies). Different transport slices are offered with multiple SLAs and grouped to optimize resources.

M3Z.10

Demonstration of Packet-Optical Intent-Based Survivability Using Mininet-Optical, Rossano P. Pinto¹, Celso H. Cesila¹, Kayol S. Mayer¹, Andres F. Portilla¹, Dalton S. Arantes¹, Darli Mello¹, Christian E. Rothenberg1; ¹UNICAMP, Brazil. We demonstrate packet-optical intent-based networking with survivability intents in a Mininet-Optical testbed. The intent agent negotiates intents with users based on path availability and allocates end-to-end connectivity services.

M3Z.11

Demonstration of Voice User Interface for Intelligent Network Orchestration, Xiaonan Xu¹, Haoshuo Chen¹, Jesse E. Simsarian¹, Roland Ryf¹, Mikael Mazur¹, Lauren Dallachiesa¹, Nicolas K. Fontaine¹, David Neilson¹; ¹Nokia Bell Labs, USA. We demonstrate a voice user interface for ONOS, where natural language processing (NLP) is applied to translate human-spoken language into ONOS northbound API requests and to answer network-related guestions with numerical reasoning.

M3Z.12

Demonstration of a Scalable and Efficient Pipeline for ML-Based Optical Monitoring, Carlos Natalino da Silva², Lluis Gifre¹, Raul Muñoz¹, Ricard Vilalta¹, Marija Furdek², Paolo Monti²; ¹Centre Tecnologic de Telecomunicacions de Catalunya (CTTC/ CERCA), Spain; ²Electrical Engineering, Chalmers Univ. of Technology, Sweden. We demonstrate a scalable processing of OPM data using ML to detect anomalies in optical services at run time. A dashboard will show operational SDN controller metrics, raw OPM data, and the ML assessment results.

M3Z.13

Hybrid SDN Orchestration in Multi-Layer Network With SONiC Packet-Optical Nodes and Coherent Pluggables, Davide Scano¹, Jordi Ortiz², Alessio Giorgetti³, José Manuel Martínez⁴, Andrea Sgambelluri¹, Emilio Riccardi⁵, Filippo Cugini⁶, Pablo Pavon⁷; ¹Scuola Superiore Sant'Anna, Italy; ²Univ. Center of Defense at the Spanish Air Force Academy, Spain; ³IEIIT CNR, Italy; ⁴E-lighthouse Network Solutions, Spain; ⁵TIM, Italy; ⁶CNIT, Italy; ⁷Technical Univ. of Cartagena, Spain. This demo presents a comprehensive framework exploiting effective cooperation of packet-optical nodes, at the edge of packet and optical domains, managed by the BGP and OSPF protocols and a Hierarchical Control Architecture. The framework enables orchestrated provisioning and soft failure recovery across a multi-layer metro network.

M3Z.14

Enhancing Cross Layer Monitoring on Open Optical Transport Networks, Nathan A. Ellsworth¹, Andrea Fumagalli¹, Tianliang Zhang¹, Sebastian Troia², Guido Maier²; ¹The Univ. of Texas at Dallas, USA; ²Politecnico di Milano, Italy. Continuous monitoring of key network elements is instrumental in intelligent control and predictive analysis. This demonstration illustrates implementation challenges that are encountered in cross-layer monitoring of optical transport networks in an opensource network operations platform.

M3Z.15

Self-Calibrating Transponder Using Intelligent DSP Metrics for Efficient Optical Networks, Bernhard Spinnler¹, Juraj Slovak¹, Hao Su¹, Sharfuddin Syed¹, Ashwin Gumaste¹, Harald Bock¹; ¹Infinera Corporation, USA. We demonstrate a self-aware automated transponder system for disaggregated open ROADM-based networks with automation using real-time inputs from a PS-capable 800Gb/s DSP that facilitates in situ measurement of signal performance, for optimal line-rate selection.

M3Z.16

Simultaneous 1080-Channel Control and Measurement for Photonic IC, Muhammad R. Afif^{2,1}, Ali F. Hadi^{2,1}, Muhammad I. Hadi^{2,1} Muhammad I. Rafi^{2,1}, Muhamad R. Abdullah^{2,1}, Andri Mahendra^{2,1}; ¹PT Nicslab Global Industri, Indonesia; ²Nicslab Ops, Inc., USA. An integrated source-measurement unit (SMU) system that can be scaled up to 1080 channels is developed. This platform can drive and measure current and voltage for many use cases including photonic integrated circuits (PICs).

M3Z.17

Direct-Detection Receiver for QPSK-Modulated Signals, Dagmawi A. Bekele1; ¹Danmarks Tekniske Universitet, Denmark. We demonstrate a novel optical receiver for direct-detection of QPSK signals using microring-based photonic integrated circuit. The QPSK signal is converted into a PAM7 electrical signal, and demodulated without the need for a local oscillator.

M3Z.18

Optoelectronic Frequency Synthesizer With World-Record Phase Noise, Meysam Bahmanian¹, Christoph Scheytt¹, Saeed Fard¹; ¹Univ. of Paderborn, Germany. We demonstrate an ultra-low phase noise PLL based on MLL. The OEPLL has a phase noise (-150 dBc/Hz 100kHz) for 10GHz carrier frequency. This phase noise is 10-20 dB better than state-of-the-art frequency synthesizers.

16:00–16:30 Coffee Break, Upper Level Corridors

16:30–18:30 Birds of a Feather: Designing and Operating the Next Generation **Optical Photonic Networks**, Room 14B

14:00-16:15 M3Z • OFC Demo Zone Presider: Benjamin Puttnam; National Inst Info & Comm Tech (NICT), Japan and Marco Ruffini; Univ. of Dublin Trinity College, Ireland

Meet Optica.

For more than a century, our society (formerly known as OSA) has brought together a community known for its scholarship and innovation.

Today our new brand, Optica, honors this legacy and moves us toward a connected world. We are committed to realizing the potential of light to solve societal challenges and empower what's possible when we all work together.

Explore our new name and look at optica.org/brand.

OPTICA | OSA

Image Credit: Kevin J. Mitchell, University of Glasgow, UK

Room 1AB	Room 2	Room 3	Room 6C	Room 6D
16:30–18:30 M4A • Symposium: Quantum Information and Optical Communication Networks: Emerging Research Areas, Challenges and Opportunities II Presider: Eleni Diamanti; CNRS,	16:30–18:30 M4B • Multi-Mode Fiber Presider: Ivana Gasulla Mestre; Universitat Politècnica de València, Spain	16:30–18:30 M4C • High Power and Comb Laser Sources Presider: Matthew Sysak; Ayar Labs, USA	16:30–18:30 M4D • Panel: 1.6Tb/s+ Intra-DC Networks Organizers: Juthika Basak, Nokia, USA; James Chien, Marvell Technology Inc, USA; Stephan Pachnicke, Christian-Albrechts Universität zu Kiel, Germany	16:30–18:30 M4E • High Bandwidth Density Interconnects for Computing Presider: Xiaodan Pang; Kungliga Tekniska Hogskolan, Sweden
France and Rui Lin; Chalmers Tekniska Högskola, Sweden M4A.1 • 16:30 Ommunication Interfaces to Quantum Memories, Matt Eichenfield'; 'Univ. of Arizona, USA. Abstract not available.	M4B.1 • 16:30 A Method for Differential Modal Delay Reduction by Using Curvature of few-Mode Optical Fiber in High-Density Cable, Masashi Kikuchi', Takayoshi Mori', Yusuke Yamada'; 'NTT Corporation, Japan. We propose a method of controlling the differential modal delay of 2LP-mode graded-index fiber by using the curvature of fiber in high-density cable. The method achieved a 50% reduction in the C-L band.	M4C.1 • 16:30 Record High Efficiency High-Power Uncooled 1.31 μm CW-DFB Lasers, Milind Gokhale', Mark A. Eman- uel', Benjamin Li'; 'Casela Technologies, USA, USA. We demonstrate record high 75°C power conversion efficiencies of 25% at 100 mW (1mm cavity) and 20% at 200 mW (2mm cavity) for CW-DFB lasers with reli- able, kink-free, single-mode operation at 1.31 μm.	Speakers: Andreas Bechtolsheim, Arista Networks, USA; Mark Heimbuch, Cisco, USA; Maxim Kuschnerov, Huawei Technologies, Germany; Thomas Liljeberg, Intel Corporation, USA; Radha Nagarijan, Marvell Technology, USA; Chongjin Xie, Alibaba Group, USA; Xiong Zhou, Google, USA Description: The bandwidth demands of hyperscale data center operators have been increasing tremen- dously over the last years. Consequently, an MSA for 800 Gb/s pluggables has been formed and the IEEE P802.3df task force for the development of 1.6 Tb/s Ethernet has been launched recently. This panel aims to highlight the requirements for next generation 1.6 Tb/s+ systems from the data center operator's perspective and the expected timelines for deploy- ment. Also, it shall provide clarity on the desired module specifications by discussing recent advances in electronic and photonic integration.	M4E.1 • 16:30 A 0.4 pJ/bit NRZ Voltage Mode VCSEL Driver for up to 224 Gbit/s SWDM Links, Urs Hecht', Helia Ordouei', Nikolay Ledenstov Jr. ² , Philipp Schol ¹ , Patrick Kurth', Ilya E. Titkov ² , Nikolay Ledentsov ² , Friedel Gerfers'; ¹ TU Berlin, Germany, '2Vertically In- tegrated Systems GmbH (VIS), Germany, We present the first true voltage-mode VCSEL driver achieving 60Gbit/s at peak efficiency of 0.36pJ/bit with BER<1e-12 improving the state-of-the-art by a factor of 2. Transmission experiments showcase error-free 56Gbit/s transmission up to 100m fiber. Advanced demonstration enables even 224Gbit/s when using SWDM at a total efficiency of 0.4pJ/bit.
	M4B.2 • 16:45 Definition of Mode Field Diameter for Few-Mode Fibers Based on Stationary Expression of Propaga- tion Constant, Atsushi Nakamura', Masaharu Ohashi ² , Yusuke Koshikiya'; 'INTT Corporation, Japan; ² Osaka Metropolitan Univ. College of Technology, Japan. We derive a novel definition of mode field diameters (MFDs) for few-mode fibers (FMFs) from the wave equation. The MFDs obtained with our definition are useful in evaluating splice losses of each mode in FMFs.	M4C.2 • 16:45 High Power Uncooled CW-DFB Lasers With High Reliability, Yuanfeng Mao', Yuanbing Cheng', Yanbo Li', Tianhai Chang', 'Huawei Technologies Co., Ltd., China. We demonstrate L-band and O-band CW- DFB lasers with kink-free and stable single mode lasing over 600 mW at 55°C and 200 mW at 85°C, respectively. More than 2000 hours reliable operation at 90°C is achieved.	 Topics will include the following questions: What are the needs of hyperscale data center operators? How much parallelism (number of wavelengths, spatial channels) do we need? What are ultimate and practical limits of symbol and per lambda rates? How will nonlinear crosstalk and residual CD be solved? What power consumption per module can be handled? This panel will comprise experts from hyperscalers, system and module vendors as well as chip suppliers sharing their views on next generation intra-data center networks. Interaction between speakers and audience through Q&A is highly encouraged. 	M4E.2 • 16:45 30-Gbps/ch x 4 ch Simultaneous Error-Free Transmission With a Low-Power Transmitter Flip-Chip-Bonded 1.3-µm LD-Array-on-Si, Toshiki Kishi', Munehiko Nagatani', Shigeru Kanazawa', Kota Shikama', Takuro Fujii', Hidetaka Nishi', Tadashi Minotani', Norio Sato', Toru Segawa', Shinji Matsuo'; 'NTT Device Technology Labs., Japan; 'NTT Device Innovation Center, Japan. 30-Gbps/ch NRZ PRBS-31 x 4 ch simultaneous error-free 1.6-km transmister consisting of 65-nm CMOS cascode shunt LD drivers and flip-chip-bonded LD-array-on-Si, resulting in power efficiency of 1.2 mW/Gbps.

Room 6E	Room 6F	Room 7AB	Room 8	Room 9
16:30–18:15 M4F • Visible Light Communications and Positioning Presider: James Lott; Technical Univ. Berlin, Germany	16:30–18:30 M4G ● Multi-X Networks Presider: Yojiro Mori; Nagoya Univ., Japan	16:30–18:30 M4H • Panel: Optical Fiber Sensing: Technology and Emerging Applications Part II Organizers: Raja Ahmad, <i>Cisco Systems</i> , USA; Mikael Mazur, <i>Nokia Bell Labs</i> , USA; Georg Radem- acher, NICT, Japan; Ting Wang, NEC Laboratories America, USA	16:30–18:30 M4I • Passive Silicon Photonic Devices Presider: Glenn Bartolini; Coherent Inc, USA	16:30–18:30 M4J • Photonic Switching Devices Presider: Sagi Mathai; Hewlett Packard Labs, USA
M4F.1 • 16:30 25G+ Distance-Adaptive Visible Light Communica- tions Enabled by Entropy Loading, Pedro Loureiro', Fernando Guiomar', Paulo Monteiro'; 'Instituto de Telecomunicações, Portugal. Using probabilistic shaping together with multi-carrier modulation and entropy loading, we experimentally demonstrate a distance-adaptive RGB-VLC system operating with diffuse white light and supporting record-high bit rates of 26–46 Gbit/s over 50-200 cm.	M4G.1 • 16:30 Top-Scored Experimental Demonstration of Cascadable PPLN- Based Inter-Band Wavelength Converters for Band- Switchable Multi-Band Optical Cross-Connect, Haruka Minami ¹ , Kenta Hirose ¹ , Takafumi Fukatani ¹ , Masahiro Nakagawa ¹ , Takushi Kazama ^{2,3} , Koji Enbutsu ³ , Takayuki Kobayashi ² , Takushi Kazama ^{2,3} , Koji Enbutsu ³ , Kei Watanabe ^{2,3} , Takushi Wamura ¹ , Takeshi Kuwahara ¹ ; NTT Network Service Systems Laboratories, Japan; ² NTT Network Innovation Laboratories, Japan; ² NTT Device Technology Labo- ratories, Japan, We experimentally demonstrate the cascadability of PPLN-based inter-band wavelength converters to realize band-switchable multi-band optical cross-connect. Experimental results show that	Speakers: Dan Bluhmental, University of California, Santa Barbara, USA; Pierepaolo Boffi, Politecnico di Milano, Italy: Lea Bouffant, Cornell University, USA; Miguel Gonzalez-Herraez, Universidad de Alcala, Spain; Leo Hollberg, Stanford University, USA; Paul Ohodnicki, University of Pittsburgh, USA; Charlotte Rowe, Los Alamos National Laboratory, USA; Hiroshi Takahashi, Nippon Telegraph and Telephone Corpora- tion, Japan; Paul Westbrook, OFS Labs, USA Description: This session focuses on the telecom/net- work operator perspective of fiber sensing to improve future optical communication systems. The panel, which consists of academia, equipment manufacturers and network operators, aims to further discuss the aspect of how, why and when to implement and use fiber sensing in optical networks.	M4I.1 • 16:30 CMOS-Foundry Compatible, Broadband, and Compact Routing of Multimode SOI Waveguides, Asher S. Novick', Kaylx Jang', Anthony Rizzo', An- eek E. James', Utsav Dave', Michal Lipson', Kerne Bergman'; 'Columbia Univ., USA. We demonstrate a CMOS-foundry compatible, broadband, and compact platform for routing multimode wavguides. Insertion loss of <0.5dB and modal cross-talk of <-15dB are measured for 90° and 180° R _{eff} -3µm bends supporting over 200nm of bandwidth.	M4J.1 • 16:30 Invited All-Optical Switching Past, Present, and Future, Richard A. Jensen', Rohit Kunjappa', Nick Parsons'; 'Huber+Suhner Polatis, USA. This paper covers developments in all-optical switching applications over time, along with current and emerging trends. Large all-optical switching deployments have been growing steadily and are now poised for wide-scale deployment in networks and datacenters.

M4F.2 • 16:45

Capacity Enhancement of VLC by Blue-Green Wavelength Division Multiplexing Using Optical Phased Array, Yujie Di^{1,2}, Caiming Sun^{2,3}, Shuyan Chen¹, Weiwei Liu², Yizhan Dai¹, Binghui Li³, Wu Shi², Jing Lin², Yingjie Shao⁴, Jing Xu⁵, Lian-Kuan Chen¹; ¹Department of Information Engineering, The Chinese Univ. of Hong Kong, Hong Kong; ²Peng Cheng Laboratory, China; ³Shenzhen Inst. of Artificial Intelligence and Robotics for Society (AIRS), The Chinese Univ. of Hong Kong (CUHK), China; ⁴Centre for Applied Photonics Fraunhofer UK Research Ltd, UK; ⁵Optical Communications Laboratory, Ocean College, Zhejiang Univ., China. We proposed and experimentally demonstrated the first blue-green OPA-based WDM-VLC systems with narrow channel spacing. A 4.5-Gbit/s transmission with 50% capacity enhancement was achieved by OCT-precoding and simplified third-order Volterra equalization.

M4G.2 • 16:45

converters.

Enabling Multiband Transmission and Programmability in Disaggregated Optical Metro Networks, Laia Nadal Reixats¹, Ramon Casellas¹, Josep Maria Fabrega¹, F. Javier Vilchez¹, Michela Svaluto Moreolo¹; 'Ctr Tecnològic de Telecom de Catalunya, Spain. A multi band (MB) sliceable bandwidth/bit rate variable (S-BVT) architecture is experimentally assessed over a disaggregated optical metro network. The programmability of the MB S-BVT is demonstrated by the implementation of an OpenConfig SDN agent.

input power optimization can reduce the degradation in transmission quality even when traversing >20

M4I.2 • 16:45

Passive Integrated Athermal (De)Multiplexers on 300 mm Silicon Photonics Wafers, Yun Gao', Noah Pestana', Skylar Deckoff-Jones', Jiajiu Zheng', Jordan Goldstein', Andrew Netherton', Ren-Jye Shiue', Michael Watts', Chris Poulton'; 'Analog Photonics LLC, USA; 'Department of Electrical and Computer Engineering, Univ. of California Santa Barbara, USA. We demonstrate passive integrated athermal (de) multiplexers showing near 0 pm/°C wavelength shift from 20 to 80 °C on 300 mm silicon photonics wafers. Wafer-scale data shows its high fabrication tolerance for next-generation optical transceiver systems.

Room 1AB	Room 2	Room 3	Room 6C	Room 6D
M4A • Symposium: Quantum Information and Optical Communication Networks: Emerging Research Areas, Challenges and Opportunities II— Continued	M4B • Multi-Mode Fiber— Continued	M4C • High Power and Comb Laser Sources—Continued	M4D • Panel: 1.6Tb/s+ Intra-DC Networks—Continued	M4E • High Bandwidth Density Interconnects for Computing— Continued
M4A.2 • 17:00 Invited Multi-User Quantum Communication With Linear Optical Networks, Vladyslav Usenko'; 'Palacký Univ. Olomouc, Czechia. Multi-user quantum communication enables distribution of secret keys or quantum resources between multiple users. We will discuss possible realizations using continuous-variable states and linear optical networks, considering realistic channels and devices, and optimizing network topology.	M4B.3 • 17:00 Invited Few-Mode Fibers: Characterizations and Ap- plications, Marianne Bigot ¹ , Maroun Bsaibes ² , Laurent Bigot ² , Yves Quiquempois ² , Pierre Sillard ¹ ; ¹ Prysmian Group, France; ² PhLAM, Université de Lille, France. We report design guidelines and modal loss characterizations (light scattering and extra-loss phenomena) of few-mode fibers that allow optimizing their crosstalk, differential mode group delay and differential mode attenuation for practical applications.	M4C.3 • 17:00 Demonstration of a High-Power and High-Reflec- tion-Tolerance Semiconductor Laser for Co-Pack- aged Optics, Ning Cheng', Dechao Ban', Xuezhe Zheng', 'Innolight, China. A high-power (>100mW) semiconductor laser is demonstrated with a small far-field divergence of 9.3°x17.6°. Under a -19.8dB back-reflection, this laser exhibits little changes in relative intensity noise and almost no power penalty for 53Gbd/s PAM4 transmission.		M4E.3 • 17:00 Invited Optical Communication for Data Centers and HPC, Bill Dally ^{1,2} ; 'NVIDIA Corporation, USA; ² Stanford Univ., USA. This talk will discuss the needs of data centers and high-performance computers for optical communication. Issues of bandwidth, bandwidth density, cost, and energy efficiency will be discussed. We will also look at the tradeoff between the number of carriers and bit rate per carrier.

M4C.4 • 17:15

A High-Power, Power-Efficient 1.3-µm SOA-Integrated DFB Laser for CPO Applications, Daisuke Inoue¹, Konosuke Aoyama², Naoki Fujiwara¹, Daisei Shoji², Harold Kamisugi^{1,2}, ¹Sumitomo Electric Industries, LTD., Japan, ²Sumitomo Electric Device Innovations, Inc., Japan. We present a high power 1.3-µm SOA-integrated DFB laser which exhibits a power conversion efficiency of more than 25% with output power of 350 mW up to 45°C. This device also shows an averaged RIN of below -155 dB/Hz.

M4E.4 • 17:30

Simultaneous Error-Free Data Modulation With Silicon Microdisks in the Multi-FSR Regime for Scalable DWDM Links, Vignesh Gopal', Anthony Rizzo', Maarten Hattink', Asher S. Novick', James Robinson', Kaveh Hosseini², Tim T. Hoang², Keren Bergman'; 'Columbia Univ, USA; 'Intel Corporation, USA. We demonstrate simultaneous error-free modulation of wavelength channels with spectral separation exceeding the individual microdisk FSR. The channels, re-interleaved onto a single optical output, are demultiplexed using ring filters validating the scalable transceiver architecture.

M4A.3 • 17:30 Invited Quantum Sensor Networks, Saikat Guha¹, ¹University

of Arizona, USA. Abstract not available.

M4B.4 • 17:30

Remote Digital Holographic Characterization of a 75.2 km Few-Mode Fiber Without Reference Wave Transfer, Akira Kawai', Shimpei Shimizu', Kohki Shibahara', Takayuki Kobayashi', Yutaka Miyamoto'; 'NTT Network Innovation Laboratories, Japan. We characterized inter-mode-group crosstalk of 75.2-kmlong three-mode fiber transmission lines with a digital holography system in which a reference wave is "remotely" generated at the output side by utilizing optical injection locking.

M4C.5 • 17:30

ization of Reference izu'i, Kokik ijvamoto'; Japan. We Af 55.2-kmth a digital e wave is y utilizing the system of the system of the system of the system of the system and the system of the system of the system of the system and the system of the system of the system of the system and the system of the system of the system of the system and the system of the system of the system of the system and the system of the system of the system of the system and the system of the system of the system of the system and the system of the system of the system of the system and the system of the system of the system of the system and the system of the system of the system of the system and the system of the system of the system of the system and the system of the system of the system of the system of the system and the system of
across all 32 output channels.

OFC 2023 • 05–09 March 2023

Room 6E	Room 6F	Room 7AB	Room 8	Room 9
M4F • Visible Light Communications and Positioning— Continued	M4G • Multi-X Networks— Continued	M4H • Panel: Optical Fiber Sensing: Technology and Emerging Applications Part II—Continued	M4I • Passive Silicon Photonic Devices—Continued	M4J • Photonic Switching Devices—Continued
M4F.3 • 17:00 Optical Beam Steerable and Flexible Data Rate Orthogonal Frequency Division Multiplexing Non-Orthogonal Multiple Access (OFDM-NOMA) Visible Light Communication, Yin-He Jian ¹ , Chii- Chun Wang ¹ , Tzu-Chieh Wei ¹ , Ying-Kai Hong ¹ , Huang-Ming Chen ¹ , Chi-Wai Chow ¹ , Yang Liu ² , Chien-Hung Yeh ³ ; ¹ National Yang Ming Chiao Tung Univ., Taiwan; ² Philips, Hong Kong; ³ Feng Chia Univ., Taiwan, We propose and demonstrate visible-light- modulator (SLM) and orthogonal-frequency-division- multiplexing non-orthogonal-Infequency-division- NOMA), illustrating the flexibilities of optical-beam steering and data-rate allocation for multiple users.	M4G.3 • 17:00 Demonstration of Multi-Hop Mode-Group Routing in a Field-Deployed Multi-Mode Fiber Network, Paola Parolari ¹ , Alberto Gatto ¹ , Ruben S. Luis ² , Georg Rademacher ² , Benjamin J. Puttnam ² , Robert Emmerich ³ , Colja Schubert ³ , Giuseppe Ferri ⁴ , Frank Achten ⁴ , Pierre Sillard ⁴ , Paolo Martelli ¹ , Giammarco Di Sciullo ⁵ , Fabio Graziosi ⁵ , Andrea Marotta ⁵ , Anto- nio Mecozzi ⁵ , Cristian Antonelli ⁵ , Pierpaolo Boffi ¹ ; ¹ Politecnico di Milano, Italy; ² National Inst. of Infor- mation and Comm. Technology, Japan; ³ Fraunhofer Heinrich Hertz Inst., Germany; ⁴ Prysmian Group, France; ⁵ Univ. of L'Aquila and CNIT, Italy. Space- division multiplexing can enhance node flexibility in urban networks by exploiting routing of weakly		M41.3 • 17:00 Wafer Scale Ge-on-Si Metalens for the mid-Infrared, Yanyan Zhou', Qize Zhong', Zhihao Ren², Landobasa Y. Tobing', Yuan Hsing Fu', Rachel Ang', Bo Li', Hong Zhou², Chengkuo Lee², Lennon Y. Lee¹; 'Inst. of Micro- electronics, Singapore; ²National Univ. of Singapore, Singapore. We report the first demonstration of metalens devices fabricated on an 8-inch Ge-on-Si wafer for the mid-infrared regime. Experimental observations of beam focusing show good match with the design.	M4J.2 • 17:00 Core-to-Core Switching Module for 4-Core MCFs Using Silicon Photonics Matrix Switch Incorporating Silicon Vertically Curved Optical Coupler, Tomoya Yoshida ¹ , Yuki Atsumi ¹ , Emiko Omoda ¹ , Katsuya Kito ² , Katsuhiro Iwasaki ² , Yusuke Kinoshita ² , Tomoaki Kiriyama ² , Ryotaro Konoke ¹ , Keijiro Suzuki ¹ , Ryosuke Matsumoto ¹ , Takashi Inoue ¹ , Kazuhiro Ikeda ¹ , Takashi Kato ² , Youichi Sakakibara ¹ ; ¹ AIST, Japan; ² Kohoku Kogyo Co. Ltd., Japan. We developed MCF core-to- core path-switching module using vertically curved silicon couplers. MCFs were directly mounted using passive pre-alignment with transmission camera observation. 32-Gbaud DP-QPSK signal transmission over the switch module was possible without

OFC 2023 • 05–09 March 2023

M4F.4 • 17:15

Optical Beam Steering Using Mode-Coupling Control in Plastic Optical Fibre, Carina Ribeiro Barbio Corrêa¹, A.M.J. Koonen¹, Eduward Tangdiongga¹; ¹Eindhoven Univ. of Technology, Netherlands. An all-fibre beam steering solution, based on mode coupling in 240-µm core size POF, is presented. Using DMT modulation over 90-cm wireless link and steering full angle of 9°, a throughput of 1.6 Gbps is achieved for visible light.

M4F.5 • 17:30

Free-Space Visible Light Communication With Downstream and Upstream Transmissions Supporting Multiple Moveable Receivers Using Light-Diffusing Fiber, Yun-Han Chang¹, Chi-Wai Chow¹, Chih-Chun Wang¹, Yin-He Jian¹, Wahyu Hendra Gunawan¹, Yang Liu², Chien-Hung Yeh³; ¹National Yang Ming Chiao Tung Univ., Taiwan; ²Philips, Hong Kong; ³Feng Chia Univ., Taiwan. We demonstrate a free-space bi-directional visible-light-communication (VLC) system using a light-diffusion-fiber (LDF) optical antenna. It allows 360° field-of-view (FOV) non-contact and moveable VLC detection, achieving 210-Mbit/s downlink and 850-Mbit/s uplink transmissions.

M4G.4 • 17:15

Cost-Effective Network Capacity Enhancement With Multi-Band Virtual Bypass Links, Daisuke Saito¹, Yojiro Mori¹, Kohei Hosokawa², Shigeyuki Yanagimachi², Hiroshi Hasegawa¹; ¹Nagoya Univ., Japan; ²NEC corporation, Japan. A cost-effective network expansion method through the use of virtual links in which multi-band transmission is introduced. Network capacity enhancement reaches over 10% just with the introduction of a few virtual links on each topology.

coupled mode groups. We demonstrate multi-hop

Tb/s group routing in different switching scenarios in the deployed 15-mode fiber-ring in L'Aguila, Italy

M4G.5 • 17:30

Modular Optical Nodes With Anylane Add-Drop for Spatial Division Multiplexed Networks, Che-Yu Liu², David Neilson¹, Roland Ryf¹, S. J. Ben Yoo³, Jesse E. Simsarian1; 1Nokia Bell Labs, USA; 2Department of Computer Science, Univ. of California, Davis, USA; ³Department of Electrical and Computer Engineering, Univ. of California, Davis, USA. We compare anylane add-drop optical nodes with modular architectures for spatial-division multiplexed (SDM) networks. By modifying open-source GNPy for SDM, we present simulations that show lower blocking probability for networks that utilize anylane add-drop architectures.

M4I.4 • 17:15

Low-Reflection Ultrahigh-Extinction-Ratio All-Silicon TM-Pass Polarizer Covering E to U Optical Communication Bands, Guanglian Cheng¹, Qiyuan Yi¹, Zhiwei Yan¹, Qiyuan Li¹, Chaotan Sima¹, Li Shen¹, Fanglu Xu1; ¹Huazhong Univ. of Science and Techn, China. We design and demonstrate a low-reflection TM-pass polarizer with high polarization extinction ratio > 30 dB over a 260 nm bandwidth. The fabricated polarizer exhibits excess loss < 0.9 dB for 1410-1700 nm wavelength range.

M4I.5 • 17:30 Tutorial

Tutorial on Silicon Photonics Applications, Tomoyuki Akiyama¹; ¹Fujitsu Limited, Japan. This tutorial reviews history of silicon photonics from early-stage proof of concept to recent diverging applications based on large-scale integration, covering breakthrough technologies and key future prospects.

over the switch module was possible without significant penalty.

M4J.3 • 17:15

C- and L-Band low Polarization Sensitive Nanosecond 1×2 Electro-Optic MZI Switch on 3-µm Thick Silicon Platform, Yu Wang¹, Srivathsa Bhat², Bin Shi¹, Timo Aalto², Nicola Calabretta¹; ¹Eindhoven Univ. of Technology, Netherlands; ²VTT Technical Research Centre of Finland, Finland. We fabricated and assessed a wideband (C-/L- band) nanosecond 1×2 electro-optic switch in 3-µm thick silicon. Results show 2.5dB lowest insertion loss, 16dB averaged extinction ration, 2.5dB polarization dependent loss and 6-ns switching time.

M4J.4 • 17:30

Core-Selective Switch for SDM Network Based on LCPG and MEMS Technology, Yuki Kuno¹, Masahiro Kawasugi¹, Yuji Hotta¹, Ryohei Otowa¹, Makoto Mizoguchi¹, Yasuki Sakurai¹; ¹SANTEC CORPORATION, Japan. We propose a core selective switch (CSS) with VOA function utilizing liquid crystal polarization grating and MEMS technology. The prototype of 19-core 1×8 CSS showed an attenuation of 19.5 dB

with more than 35 dB optical crosstalk.

Room 1AB	Room 2	Room 3	Room 6C	Room 6D
M4A • Symposium: Quantum Information and Optical Communication Networks: Emerging Research Areas, Challenges and Opportunities II— Continued	M4B • Multi-Mode Fiber— Continued	M4C • High Power and Comb Laser Sources—Continued	M4D • Panel: 1.6Tb/s+ Intra-DC Networks—Continued	M4E • High Bandwidth Density Interconnects for Computing— Continued
	M4B.5 • 17:45 55-Spatial-Mode Fiber for Space Division Multiplex- ing, Pierre Sillard ¹ , Marianne Bigot ¹ , Frank Achten ¹ , Georg Rademacher ² , Ruben S. Luis ⁴ , Benjamin J. Puttnam ² ; ¹ Prysmian Group, France; ² NICT, Japan. We report the design and the fabrication of a trench- assisted graded-index-core fiber that supports 55 spatial modes. The fiber is optimized to ensure low macro-bend losses for all the modes, while minimizing the differential-mode-group delays.	M4C.6 • 17:45 100 Gbps/A Transmission With Quantum Dot O- Band Comb Source Using 50 GBd PAM4/16QAM- OFDM Signals, Lakshmi Narayanan Venkatasu- bramani ¹ , Haixuan Xu ² , Mikhail Buyalo ³ , Alexey Gubenko ³ , Yonglin Yu ² , Liam Barry ¹ ; ¹ Dublin City Univ, Ireland; ² Wuhan National Laboratory for Optoelec- tronics, Huazhong Univ. of Science and Technology, China; ³ Innolume, Germany.We demonstrate a record high transmission rate of 100 Gbps/A with 50 GBd PAM4 and 16QAM-OFDM signals using a packaged wavelength-tunable InAs/InGaAs quantum dot-based laser comb source for short-reach application. We successfully show the performance is within the standard FEC limits.		M4E.5 • 17:45 A Kind of Low-Modal-Crosstalk Mode DEMUX for Stable DSP-Free IM/DD MDM Transmission, Jian Cui ¹ , Yuyang Gao ¹ , Shuailuo Huang ¹ , Jinyi Yu ¹ , Lei Shen ² , Lei Zhang ² , Changkun Yan ² , Liubo Yang ² , Ruichun Wang ² , Yongqi He ¹ , Zhangyuan Chen ^{1,3} , Juhao Li ^{1,3} , 'Peking Univ., China; 'ZVOFC, China; ³ Pengcheng Laboratory, China. A low-modal-crosstalk 4-LP-mode demultiplexer with orthogonal combiner for degenerate mode reception is designed and fabricated by side-polishing processing, based on which DSP-free IM/DD MDM-WDM transmission over 20-km weakly-coupled FMF are experimentally demonstrated.
	M4B.6 • 18:00 Invited Processing and Applications of Semiconductor Core Fibers, Ursula J. Gibson ¹ ; 'Norwegian Unix. of Science and Tech, USA. Optical fibers with semiconducting cores permit transmission of signals from the visible to THz wavelengths, and devices can utilize the large nonlinear coefficients of the core materials. Fabrication, post-processing, properties and devices are reviewed.	M4C.7 • 18:00 Highly Reliable Quantum dot Laser Directly Grown on CMOS Compatible Si (001) Substrate, Xiangjie Zhao', Xiang Li', Guanlin Lou', Ling Sun', Shiyong Zhang', Haihua Qi', 'Hisilicon Optoelectronics Co. Ltd., China. Highly reliable InAs/GaAs quantum dot laser directly grown on CMOS compatible Si (001) substrate without any predefined pattern or intermediate material. Aging at 85°C 100mA, the laser shows optical power degradation less than 5% after 3000 hours.		M4E.6 • 18:00 Invited Developments of VCSEL-Based CPO Transceivers Beyond 1Tbps, Daniel Kuchta'; 'IBM TJ Watson Research Center, USA. This paper covers recent industry developments in VCSEL-based transceivers that are designed for co-packaging on a first level package with ASICs, such as CPUs, GPUs, and data center switches.
		M4C.8 • 18:15 Multi Aperture High Power 100G Single Mode 850nm VCSEL for Extended Reach 800G Eth- ernet, Lukasz Chorchos ^{1,2} , Nikolay Ledenstov Jr. ² , Oleg Makarov ² , Vitaly Shchukin ² , Vladimir Kalosha ² , Jaroslaw P. Turkiewicz ¹ , Nikolay Ledentsov ² ; 'Warsaw Univ. of Technology, Poland; ⁴ Vl Systems GmbH, Ger- many. The paper presents multi-aperture single mode 850nm VCSEL with optical modulation bandwidth exceeding 30GHz and narrow optical spectrum width enabling long distance high-speed data transmission exceeding 800m over OM4 multi-mode fiber.		

19:00–21:00 Student Party, Petco Park

Room 6E	Room 6F	Room 7AB	Room 8	Room 9
M4F • Visible Light Communications and Positioning— Continued	M4G • Multi-X Networks— Continued	M4H • Panel: Optical Fiber Sensing: Technology and Emerging Applications Part II—Continued	M4I • Passive Silicon Photonic Devices—Continued	M4J • Photonic Switching Devices—Continued

M4F.6 • 17:45 Invited

Inbuilding Optical Wireless Positioning Using Time of Flight, Christoph Kottke¹, Ziyan Ma¹, Sepideh Mohammadi Kouhini¹, Volker Jungnicke¹; ¹Fraunhofer Inst Nachricht Henrich-Hertz, Germany. We present a LiFi positioning and communication system based on the ITU-T G.9991 standard. Accuracies as low as 3 cm in x,yz direction have been achieved, utilizing an optimization approach for the LED behavior. M4G.6 • 17:45 On the Impact of Fault-Induced Power Transients in Wideband Optical Networks, Andre Souza^{1,3}, António Eira¹, Nelson Costa¹, João Pedro^{1,2}, João Pires²; ¹INFINERA UNIPESSOAL LDA, NIF 510553079, Portugal; ²Instituto de Telecomunicações, Instituto Superior Técnico, Portugal; ³Instituto Superior Técnico, Portugal. We study the consequences of power transients caused by link failures and stimulated Raman scattering in multi-band networks. Results show that carefully optimizing transient margins should avoid high capacity reduction and excessive costs.

M4G.7 • 18:00 Top-Scored

Single Multicore-Fiber Bidirectional Spatial Channel Network Based on Spatial Cross-Connect and Multicore EDFA Efficiently Accommodating Asymmetric Traffic, Kyousuke Nakada¹, Hitoshi Takeshita², Yuki Kuno³, Yusuke Matsuno⁴, Itsuki Urashima¹, Yuusuke Shimomura², Yuji Hotta³, Tsubasa Sasaki⁴, Yudai Uchida¹, Kohei Hosokawa², Ryohei Otowa³, Rika Tahara¹, Emmanuel Le Taillandier de Gabory², Yasuki Sakurai3, Ryuichi Sugizaki4, Masahiko Jinno1; 1Kagawa Univ., Japan; ²NEC Corporation, Japan; ³santec corporation, Japan; ⁴Furukawa Electric Co., Ltd., Japan. A single multicore-fiber bidirectional spatial channel network that efficiently accommodates asymmetric traffic is proposed and demonstrated using a coreselective-switch-based spatial cross-connect with an M×N wavelength-selective switch and a bidirectional multicore EDFA with reversible optical isolators.

M4G.8 • 18:15

Architecture and Performance Evaluation of Bundled-Path-Routing Multi-Band Optical Networks, Ryuji Munakata¹, Takuma Kuno¹, Yojiro Mori¹, Shih-Chun Lin², Motoharu Matsuura⁴, Suresh Subramaniam³, Hiroshi Hasegawa¹; ¹Nagoya Univ., Japan; ²North Carolina State Univ., USA; ³George Washington Univ., USA; ⁴Univ. of Electro-communications, Japan. We propose a novel bundled-path-routing node architecture for multi-band optical networks and a network design algorithm based on graph degeneration. Feasibility is demonstrated through experiments on a prototype with 300.8 Tbps throughput.

OFC 2023 • 05–09 March 2023

19:00–21:00 Student Party, Petco Park

M4J.5 • 17:45

Performance Verification of 7,424 × 7,424 Optical Switch Offering 1.4 µs Switching Time, Ryosuke Matsumoto', Ryotaro Konoike', Hiroyuki Matsuura', Keijiro Suzuki', Takashi Inoue', Kazuhiro Ikeda', Shu Namiki', Ken-ichi Sato'; 'National Inst. of Advanced Industria, Japan. We experimentally verify performance of 7,424×7,424 optical switches that offer 1.4-µs switching time. Two key enablers are reported; newly developed polarization-insensitive 64×1 silicon-photonic switches integrated with wavelength-tunable filters, and a fast burst-mode coherent receiver.

M4J.6 • 18:00 Invited

Large-Scale High-Speed Photonic Switches Fabricated on Silicon-Based Photonic Platforms, Tao Chu^{1,2}, Nuo Chen¹, Weijie Tang², Yating Wu¹; ¹Zhejiang Univ, China,²Zhejiang Laboratory, China. Large-scale high-speed photonic switches were demonstrated on silicon-on-insulator and thin-film Lithium Niobate platforms, respectively. Ultra-low-loss spot-sizeconverter, grating coupler, waveguide crossing, and high-speed switch unit are developed, as well as an integrated 128 × 128 switch.

Ballroom 20BCD

08:00-10:00 Tu1A • Plenary Session

Presider: Ramon Casellas; CTTC, Spain; Christopher Cole; Coherent Corp., USA; Ming-Jun Li; Corning Inc, USA

10:00–17:00 Exhibition and Show Floor, Exhibit Hall (concessions available)

10:00–14:00 Unopposed Exhibit-only Time, Exhibit Hall (coffee service 10:00–10:30)

10:00–16:45 OFC Career Zone, Exhibit Hall, B2 OFC Career Zone Job Fair | Resume Critique Workshop | Mock Interviews

11:00–12:00 Optical Communications Technical Group Poster Pitch Competition, Room 3

12:00–14:00 OFC and Co-Sponsors Awards Ceremony and Luncheon, Upper Level, Ballroom 20A

Room 1AB	Room 2	Room 3	Room 6C	Room 6D	Room 6E
14:00–16:00 Tu2A • Symposium: The Crucial Role of Photonics in Achieving the UN Sustainability Development Goals: Learnings and Opportunities I Presider: To be announced.	14:00–16:00 Tu2B • Photonic Devices for Novel Applications Presider: Connie Chang- Hasnain; Berxel Photonics, USA	14:00–16:00 Tu2C • Deployment and Field Trials Presider: Aramais Zakharian; Corning Inc, USA	14:00–16:00 Tu2D • Network Planning and Operation Presider: Hidenori Takahashi; KDDI Research, Inc., Japan	14:00–16:00 Tu2E • Co-Packaged and PIC for Data Center Applications Presider: Fumio Koyama; Tokyo Inst. of Technology, Japan	14:00–16:00 Tu2F • Al and Optimization in (Disaggregated) Networks Presider: Stephan Pachnicke; Christian-Albrechts Universität zu Kiel, Germany
Tu2A.1 • 14:00 Invited Innovative Optical and Wireless Net- work (IOWN) for a Sustainable World, Yosuke Aragane'; 'NTT Communications Corporation, Japan. IOWN is a next generation communication and computing infrastructure which enables both high- performance and low-power consumption for the Sustainable Development Goals by IOWN's capabilities of an all-photonics network and a data-centric infrastructure.	Tu2B.1 • 14:00 Invited Optoelectronic Components for Com- munications and Sensing, Julie Engi; 'II-VI Incorporated, USA. Abstract not available.	Tu2C.1 • 14:00 Polarity and Twist Rate Detection for Ac- curate and Reliable Low Loss Multicore Fiber Fusion Splicing, Tristan Kremp ¹ , Yue Liang ² , Alan H. McCurdy ² ; 'OFS Labora- tories, USA; 'OFS Fitel LLC, USA. Using a novel azimuthal alignment algorithm and side-view images, we reliably determine the polarity and twist rate of multicore fiber and achieve average losses as low as 0.03 dB using a 3-electrode arc-discharging	Tu2D.1 • 14:00 Optimal Line-Rates for IP-Over-DWDM in Metro and Core Networks: Comparison of ZR+ and Xponder Architectures, Ashwin Gumaste ¹ , João Pedro ¹ , Paul Momtahan ¹ , Harald Bock ¹ ; ¹ Infinera Corporation, USA. With the advent of pluggable ZR/ZR+ and embedded optics at 400Gb/s and beyond, we consider optimal network architectures and line-rates in access, metro and core networks. Simulations across a US-core	Tu2E.1 • 14:00 Invited Silicon-Photonic Integrated Circuits With Enhanced Optical Functionality for Data- Center Applications, Christopher R. Doerr'; 'Doerr Consulting, LLC, USA. Abstract not available.	Tu2F.1 • 14:00 Invited CTC Experiences on Building Computing Power Network, Gefan Zhou'; 'China Telecom Corp Ltd, Beijing Res Inst, China For the optimum leveraging of distributed computing and network resources in the network for various services, we proposed an advanced architecture of Computing Power Network (CPN) with the developmen of CPN gateway and transaction platform.

0.03 dB using a 3-electrode arc-discharging networks. Simulations across a US-core fusion splicer.

network are demonstrated.

07:30–08:00 Plenary Session Coffee Break, Upper Level, Ballroom 20 Lobby

Ballroom 20BCD

08:00-10:00

Tu1A • Plenary Session

Presider: Ramon Casellas; CTTC, Spain; Christopher Cole; Coherent Corp., USA; Ming-Jun Li; Corning Inc, USA

10:00–17:00 Exhibition and Show Floor, Exhibit Hall (concessions available)

10:00–14:00 Unopposed Exhibit-only Time, Exhibit Hall (coffee service 10:00–10:30)

10:00–16:45 OFC Career Zone, Exhibit Hall, B2 OFC Career Zone Job Fair | Resume Critique Workshop | Mock Interviews

11:00–12:00 Optical Communications Technical Group Poster Pitch Competition, Room 3

12:00–14:00 OFC and Co-Sponsors Awards Ceremony and Luncheon, Upper Level, Ballroom 20A

Room 6F	Room 7AB	Room 8	Room 9	Networks Presented by Infinera 12:15–12:45, Theater III
14:00–16:00 Tu2G • Subsea and Long-Haul Transmission Presider: Alexei Pilipetskii; SubCom	14:00–16:00 Tu2l • Panel: LiDAR Systems and Technologies with Integrated	14:00–15:45 Tu2H • Quantum Computing Presider: Rui Lin; Chalmers Tekniska Högskola, Sweden	14:00–16:00 Tu2J • Radio-Over-Fiber for 5G and Beyond Systems Presider: Thomas Clark; JHU/APL, USA	MW2 • MW Panel II: PAM vs. Coherent for Data Center Connectivity 12:15–13:45, Theater I
LLC, USA	Photonics Organizers: Long Chen, Cisco, USA; Sylvie Menezo, SCINTIL Photonics, France; Shilong Pan, Nanjing University Aeronautics & Astronautics, China; Milos Popovic, Boston University, USA			DCS1 • DCS Panel I: More tha Clos: Future Datacenter Netw Architectures and the Role of Optics 12:30–14:00, Theater II
Tu2G.1 • 14:00 Invited Promising DSP Techniques to Increase Long Haul Transmission Capacity, Domanic Lavery', Siddharth Varughese ² , Carlo Condo', Mohamed Osman', Mehdi Torbatian', Sandy Thomson', Yuejian Wu', Robert Maher ³ , Han Sun'; 'Infinera Canada Inc., Canada; ² Infinera Corporation, USA; ³ Infinera Corporation, USA. The state-of-the-art in realtime DSP for long haul coherent optical communication systems is described. We discuss how emerging applications for coherent transceivers may influence DSP design choices.	Speakers: Philippe Absil, IMEC, Belgium; Hyunil Byun, Samsung Electronics, Republic of Korea; Sen Lin, Aurora, USA; Clement Nouvel, Valeo, Germany; Chris Poulton, Analog Photonics, USA Description: LIDAR, i.e., "laser imaging, detection, and ranging", is a 3D scanning technology using optical signals. Soon after the invention of lasers, LIDAR was put in use in areas such as meteorology, geography, and military applications. For example, in 1971 during the Apollo 15 mission, astronauts used a laser altimeter to map the surface of the moon. Such LIDAR instruments for remote sensing are widely used	Tu2H.1 • 14:00 Tutorial On-Chip Engineering Entanglement for Photonic Quantum Computing, Jianwei Wang ¹ ; ¹ Peking Univ., China. Abstract not available.	Tu2.J.1 • 14:00 Transparent Radio–Fiber–Radio–Fiber System in 100-GHz Band for Indoor Uplink Signal Transmis- sion in Beyond SG, Pham Tien Dat', Yuya Yamaguchi', Atsushi Kanno'-, Naokatsu Yamamoto', Tetsuya Kawa- nishi ^{3,1} , Kouichi Akahane'; 'NICT Network System Research Inst., Japan; ² Nagoya Inst. of Technology, Japan; ³ Waseda Univ., Japan. We demonstrate the first radio–fiber–radio–fiber system for delivery of 100-GHz radio signals from indoor to central offices. We transmitted single-carrier and OFDM signals with line rates of 30 and 40 Gb/s over the system.	OFCnet Panel 13:15-13:45, Theater III OFCnet Optical Engineering a Maintenance 14:15-14:45, Theater III MW3 • MW Panel III: 800G / 128GBaud Pluggable Coheren Key Technologies and Applica 14:00–15:30, Theater I

Show Floor Programming

Conversation with the Plenary **Speakers** 10:15–10:45. Theater III

MW1 • MW Panel I: State of the Industry 10:30–12:00, Theater I

SF2 • OCP: Optics in Future Al Systems: Interconnects, Switching and Processing 10:45–11:45, Theater II

SF3 • ITU-T SG15: Standards Update with the Latest on 5G Transport, Higher Speed PON, SDM, OTN Technologies, and Interoperable Optical Interfaces 11:00–12:00, Theater III

DCSK • Data Center Summit Keynote: Past Experiences and Future Prospects of Data Center Interconnect Optical Networks 12:00–12:30, Theater II

How Innovations in Coherent **Optical Engines Can Deliver** Substantial Value to Telecom

han a twork of

and

ent cations

OFC 2023 • 05–09 March 2023

Room 1AB	Room 2	Room 3	Room 6C	Room 6D	Room 6E
Tu2A • Symposium: The Crucial Role of Photonics in Achieving the UN Sustainability Development Goals: Learnings and Opportunities I—Continued	Tu2B • Photonic Devices for Novel Applications— Continued	Tu2C • Deployment and Field Trials—Continued	Tu2D • Network Planning and Operation—Continued	Tu2E • Co-Packaged and PIC for Data Center Applications—Continued	Tu2F • Al and Optimization in (Disaggregated) Networks—Continued

Tu2A.2 • 14:30 Invited How Optical Technology in F5G Support Fulfilling the UN Sustainability Goals, Marcus Brunner¹; ¹Huawei Technologies, Switzerland. Abstract not available.

Tu2B.2 • 14:30 Invited

Silicon Photonics for High-Speed 5G and Optical Networks, Leslie Rusch¹, Xun Guan²; ¹Université Laval, Canada; ²Tsinghua Shenzhen International Graduate School, China. Optical fronthaul for radio access networks will enable the promise of 5G and beyond. We describe how centralized sources and diminutive microring modulators can meet these goals while also reducing footprint and power consumption.

Tu2C.3 • 14:30 Invited

small-diameter microducts.

Tu2C.2 • 14:15 Top-Scored

Ultra-High-Density Microduct Cable With

Uncoupled 12-Core Fibers With Stan-

dard 250-µm Coating, Tetsuya Hayashi¹,

Ayumi Inoue¹, Yohei Suzuki², Yuji Norisugi²,

Keiji Kawamoto², Junya Takano¹, Takuji Naqashima¹, Takao Hirama², Kentaro Takeda²,

Yuki Shimoda², Fumiaki Sato²; ¹Optical

Communications Laboratory, Sumitomo

Electric Industries, Ltd., Japan; ²Optical

Fiber & Cable Division, Sumitomo Electric

Industries, Ltd., Japan. We developed 12core fibers suitable for short/medium-reach applications and fabricated a 144-fiber 8-mm-outer-diameter cable using the 12core fibers, which demonstrates the feasibility of ultra-high-core-count optical cables that can be blown into widely-deployed

Development and Perspectives of Next Generation Optical Fiber Cable Standardization, Peter L. Pondillo1; 1Corning Inc, USA. Provides an overview of recent standardization activities addressing new technological trends and advancements in optical fiber and cable performance specifications and/or test methods.

Tu2D.2 • 14:15

Optimal Transponder Technology for Transporting 800 GbE Services in IP-Over-WDM Backbone Networks, Serge Melle¹, Thierry Zami¹, Nicola Rossi¹, Bruno Lavigne¹: ¹Nokia Corporation, France, This network study compares the benefit of Elastic Optical Transponders enabling 130GBaud WDM channels for transporting 800GE services, showing ability to minimize number of required EOTs per Gb/s in regional and long-haul networks.

Tu2D.3 • 14:30

Optimal Channel Spacing for Next-Gen WDM Networking With 800ZR+ Elastic Optical Transponders, Thierry Zami¹, Nicola Rossi¹, Bruno Lavigne¹; ¹Nokia Corporation, France. By foreseeing an evolution from 800ZR to 800ZR+, like 400ZR+ just after 400ZR, we evaluate how WDM networks benefit from these 800ZR+ interfaces depending on their traffic and on their quality of wavelength routing equipment

Tu2E.2 • 14:30

Tu2E.3 • 14:45

Polarization Insensitive Photonic Integrated 1x4 WDM Wavelength Selective Switch for Optical Networks, Aref Rasoulzadehzali1, Ripalta Stabile1, Nicola Calabretta1; 1TUe, Netherlands. We experimentally demonstrate a 1x4 WDM polarizationinsensitive wavelength selective switch based on bulk SOAs co-integrated with AWGs. Results show a net gain, broadband, and error-free operation with 0.6 dB power penalty up to 25Gbps NRZ-OOK.

Fully Integrated Dual-Polarization Sili-

con Photonic Transceiver With Auto-

mated Polarization Control, Xinru Wu¹,

Duanni Huang¹, Taehwan Kim¹, Ranjeet

Kumar¹, Guan-Lin Su¹, Chaoxuan Ma¹

Songtao Liu¹, Ganesh Balamurugan¹,

Haisheng Rong¹; ¹Intel Corporation, USA.

We demonstrate a dual-polarization, single-

wavelength transceiver with BER below soft-

decision FEC (<2.0e-2) at 320Gb/s (PAM-4)

aggregate rate. The silicon photonic chip

includes integrated laser, ring modulators,

Si/Ge detectors, and polarization demux with automatic polarization control.

Tu2F.2 • 14:30

Experimental Demonstration of ML-Based DWDM System Margin Estimation, Jasper Müller^{1,2}, Frank Slyne³, Kaida Kaeval¹, Sebastian Troia⁴, Tobias Fehenberger¹ Jörg-Peter Elbers¹, Daniel C. Kilper³ Marco Ruffini³, Carmen Mas Machuca²; ¹ADVA, Germany; ²Chair of Communication Networks, Technical Univ. of Munich, Germany; ³Connect Research Centre, , School of Computer Science and Statistic, Trinity College Dublin, Ireland: ⁴Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy. SNR margins between partially and fully loaded DWDM systems are estimated without detailed knowledge of the network. The ML model, trained on simulation data, achieves accurate predictions on experimental data with an RMSE of 0.16 dB.

Tu2E.3 • 14:45

Explainable Machine Learning-Enabled Just-Enough Margin Configurations in Dynamic S+C+L-Band Optical Networks, Zevuan Yang¹, Rentao Gu¹, Yuefeng Ji¹; ¹Beijing Univ. of Posts and Telecommunications, China. We configure an explainable machine learning-enabled just-enough margin for each lightpath in dynamic S+C+L-band optical networks. Explainable decisions improve blocking ratio and spectral efficiency performances by 35.9% and 17.2% compared with the benchmarks.

Tu2D.4 • 14:45

On Real-Time Optical Subcarrier Management in P2MP Networks With Mixed-Strategy Gaming, Qian Wang¹, Hailey Shakespear-Miles², Xiaoliang Chen¹, Marc Ruiz², Zhaohui Li¹, Luis Velasco²; ¹Sun Yat-sen Univ., China; ²Universitat Politècnica de Catalunya (UPC), Spain. We developed a mixed-strategy gaming approach for distributed and real-time optical subscarrier management in pointto-multipoint networks, achieving traffic loss rates close to those by ILP-based centralized optimization.

Room 6F	Room 7AB	Room 8	Room 9	Show Floor Programming
Tu2G • Subsea and Long-Haul Transmission—Continued	Tu2l • Panel: LiDAR Systems and Technologies with Integrated Photonics—Continued	Tu2H • Quantum Computing— Continued	Tu2J • Radio-Over-Fiber for 5G and Beyond Systems—Continued	MW3 • MW Panel III: 800G / 128GBaud Pluggable Coherent - Key Technologies and Applications 14:00–15:30, Theater I
	today. In addition, over the last decade, with the rapid advancements in 3D face recognition, autonomous vehicles, and industrial automation, low-cost, com- pact, and reliable LIDAR systems are seen as a key technology for precision sensing in many consumer and industrial applications. This panel aims to provide a glimpse of LIDAR systems in different applications and different technology di- rections, and how integrated photonics can help drive down the size, cost, and improve reliabilities of LIDAR systems. In particular, the panel will discuss the pros and cons of direct detection in time-of-flight LIDAR and coherent detection in frequency-modulated con- tinuous wave LIDAR, and their suitability in different sensing applications, and discuss the 2D scanning mechanisms, comparing mechanical beam steering with integrated photonics based solutions such as optical phase array and switched beam array.		Tu2J.2 • 14:15 Top-Scored 14.1Tb/s CPRI-Equivalent Rate 1024-QAM Trans- mission via Combs-Cloned Self-Homodyne WDM Digital-Analog Radio-Over-Fiber System, Chenbo Zhang', Yixiao Zhu', Bibo He', Rongwei Liu', Yicheng Xu', Qunbi Zhuge ² , Weiwei Hu', Weisheng Hu ² , Zhangyuan Chen', Xiaopeng Xie', 'Peking Univ, China, 'Shanghai Jiao Tong Univ, China. We leverage cutting-edge photonic approaches to demonstrate a clone-combs-based self-homodyne WDM digital- analog RoF system for mobile fronthaul. We achieve a 240GHz(=12A-20GHz) aggregated bandwidth with an unprecedented 14.1Tb/s CPRI-equivalent data rate supporting the 1024-QAM signal.	OFCnet Optical Engineering and Maintenance 14:15–14:45, Theater III DCS2 • DCS Panel II: Open Line Systems - Can We Shape "Disaggregation" in One Direction? 14:15–15:45, Theater II OFCnet Quantum Key Distribution 16:15-16:45, Theater III
Tu2G.2 • 14:30 128GBd Record QPSK Transmission Over 20 631 km and PCS16QAM Transmission Over 12 558 km Using InP Technology Platform, Juan Espara', Henrique Pavani', Andrea Quintana Zambrano', Rich- ard Garuz', Sebastien Dupont', Stephane Ruggeri'; 'ASN, France. We experimentally demonstrate the generation, transmission, and detection of 128GBd QPSK and PCS16QAM signals in optical submarine systems. We have validated the transmission of 33 channels PCS16QAM along the C-band over 12 558 km with an average of 0.74 dB margin from 25% soft FEC threshold.			Tu2J.3 • 14:30 Tutorial Towards Mobile Fronthaul for 6G Networks, Names', 'Univ. College London, UK. In less than a decade, rapid developments have taken place in mobile fronthaul technology. As research and development for 6G commences, the future possible directions for fronthaul technology will be outlined in this tutorial.	

Tu2G.3 • 14:45 Longitudinal Power Monitoring Over a Deployed 10,000-km Link for Submarine Systems, Alix A. May', Fabien Boitier', Alexis Carbo Meseguer', Juan Esparza', Philippe Plantady', Alain Calsat', Patricia Layec', 'Nokia Bell Labs France, France; 'Alcatel Submarine Networks, France, We demonstrate the power profile estimation over a deployed 10,000km submarine link using digital processing at the receiver. We experimentally show that we estimate span lengths with 0.49km uncertainty and locate multiple power losses. Tuesday, 7 March

Room 1AB	Room 2	Room 3	Room 6C	Room 6D	Room 6E
Tu2A • Symposium: The Crucial Role of Photonics in Achieving the UN Sustainability Development Goals: Learnings and Opportunities I—Continued	Tu2B • Photonic Devices for Novel Applications— Continued	Tu2C • Deployment and Field Trials—Continued	Tu2D • Network Planning and Operation—Continued	Tu2E • Co-Packaged and PIC for Data Center Applications—Continued	Tu2F • AI and Optimization in (Disaggregated) Networks—Continued
Tu2A.3 • 15:00 Invited Standards and Optical Technologies to Decrease Power Consumption: What is Being Done and Remains to be Done, Naveena Genay ¹ ; ¹ Orange Labs, France. Abstract not available.	Tu2B.3 • 15:00 Invited Integration of Amplifiers in Silicon Nitride Photonic Circuit, Sonia Garcia-Blanco ¹ ; ¹ Universiteit Twente, Netherlands. Abstract not available.	Tu2C.4 • 15:00 Loss Performance of Field-Deployed High-Density 1152-Channel Link Con- structed With 4-Core Multicore Fiber Cable, Takuya Oda ¹ , Shota Kajikawa ¹ , Katsuhiro Takenaga ¹ , Okimi Mukai ¹ , Daiki Takeda ¹ , Nikhil Angra ² , Usman Nasir ² , Jongchul Park ³ , Jing Zhang ³ , Victor Kopp ³ , Daniel Neugrosch ¹ , Kentaro Ichii ¹ ; Fujikura Ltd., Japan; ² AFL Hyperscale, USA; ³ Chiral Photonics Inc., USA. A cable link with 288 four-core multicore fibers and 288 pairs of fanout devices was deployed in the field and its losses were evaluated. No excess losses were observed from MCF-related components in field installation.	Tu2D.5 • 15:00 Clustering-Based Dynamic Bandwidth Al- location for Point-to-Multipoint Coherent Optics, José Alberto Hernández Gutiérrez ¹ , Farhad Arpanae ¹¹ , Gonzalo Martinez ¹ , Oscar Gonzalez de Dios ² , Juan Pedro Fernandez- Palacios ² , Antonio Napoli ³ ; 'Universidad Carlos III de Madrid, Spain; ² Telefonica <i>I+D</i> , Spain; ³ Infinera, Germany. This article introduces a modified version of clustering techniques that can be applied in traffic aggregation for point-to-multipoint optical network architectures employ- ing digital subcarrier multiplexing. The algorithm dynamically assigns individual subcarri- ers to nodes with uncorrelated traffic profiles	Tu2E.4 • 15:00 Invited Advancements in Heterogeneously Integrated Silicon Photonics for IMDD and Coherent Data Transmission, Yuliya A. Akulova', Richard Jones', Kimchau Nguyen', Ranju Venables', Pierre Dous- siere', Ansheng Liu', Giovanni Gilardi', Mengyuan Huang', David Patel', Haijiang Yu', Saeed Fathololoumi', Daniel Zhu', Hari Mahalingam', Tiehui Su', Pegah Seddighian', Christian Malouin', Wenhua Lin', Ye Wang', Kadhair Al-hemyan', Eric Snow'; 'Intel Corporation, USA. Explosive growth of datacenter traffic drives rapid scaling of optical interconnects architectures and technologies. We summarize the advancements in Intel's heterogeneously	Tu2F.4 • 15:00 Deep Neural Network-Enabled Fast and Large-Scale QOT Estimation for Dynamic C+L-Band Mesh Networks, Yao Zhang ¹ , Yuchen Song ¹ , Shi Yan ² , Jin Li ¹ , Chuanbiao Zhang ³ , Yu Tang ³ , Min Zhang ¹ , Danshi Wang ¹ ; Beijing Univ. of Posts and Telecom- munications, China; ² China United Network Communications Group Company Limited, China. A fast and accurate QoT estimation scheme using deep neural network is proposed for dynamic C+L-band large- scale mesh networks. The calculation time is decreased dramatically and it is applied to measure the fiber broken case.
		Tu2C.5 • 15:15 Top-Scored 114 Pbit/s·km Transmission Using Three Vendor-Installed 60-km Standard Clad-	Tu2D.6 • 15:15 Invited Adaptive Traffic Grooming Using Rein- forcement Learning in Multilayer Elastic	integrated silicon photonics manufacturing platform enabling throughput scaling for IMDD and high-efficiency coherent links.	Tu2F.5 • 15:15 Improved QoT Estimations Through Refined Signal Power Measurements in

-

forcement Learning in Multilayer Elastic

Optical Networks, Takafumi Tanaka1; 1NTT

Network Innovation Laboratories, Japan.

We introduce a traffic grooming technique

using reinforcement learning in multilayer

networks. We confirm that superior

performance over heuristic methods

is obtained in adaptability to several

requirements such as blocking probability

and energy consumption.

D

D (F

a Disaggregated and Partially-Loaded

Live Production Network, Yan He¹, Zhigun

Zhai², Lingling Wang³, Yaxi Yan¹, Dou Liang³,

Chongjin Xie4, Chao Lu5, Alan Pak Tao Lau1;

¹Photonics Research Inst., Department of

Electrical Engineering, The Hong Kong

Polytechnic Univ., Hong Kong; ²Alibaba

Cloud, Alibaba Group, Hangzhou, China,

China; ³Alibaba Cloud, Alibaba Group,

Beijing, China, China; ⁴Alibaba Cloud,

Alibaba Group, New York, USA, USA;

⁵Photonics Research Inst., Department

of Electronic and Information Engineering, The Hong Kong Polytechnic Univ., Hong Kong. We proposed to combine signal power measurements from optical amplifiers and channel monitors in a disaggregated and partially-loaded live production network to reduce the standard deviation of GSNR estimation error from

0.6347dB to 0.4387dB.

D

ding Multi-Core Fiber Spans With Multiple

Fusion Splicing, Daiki Soma¹, Shohei Bep-

pu¹, Yuichi Miyagawa², Noboru Yoshikane¹,

Takehiro Tsuritani¹; ¹KDDI Research, Inc.,

Japan; ²KDDI Corporation, Japan. 63.58

Tbit/s transmission has been experimentally

demonstrated over 1,800-km standard

cladding trench-assisted profile 4-core fiber

(TA-4CF) with multiple connections using

installed multivendor TA-4CF optical cables

in aerial areas and underground ducts for

practical deployment.

D. 1 A D

-

Room 6F	Room 7AB	Room 8	Room 9	Show Floor Programming
Tu2G • Subsea and Long-Haul Transmission—Continued	Tu2I • Panel: LiDAR Systems and Technologies with Integrated Photonics—Continued	Tu2H • Quantum Computing— Continued	Tu2J • Radio-Over-Fiber for 5G and Beyond Systems—Continued	MW3 • MW Panel III: 800G / 128GBaud Pluggable Coherent - Key Technologies and Applications 14:00–15:30, Theater I
Tu2G.4 • 15:00 Unrepeatered C-Band Transmission of 35.5 Tb/s Capacity Over 291 km Using 128 GBd DP.16-OAM, Alexis Busson', Hans Bissessur', Daryna Kravchenko', Farana Hedaraly', Juan Uriel Espara'; 'Alcatel Sub- marine Networks, France. We present a 128 GBd high baud rate record unrepeatered experiment with 39 channels carrying DP.16-OAM with offline post- processing over 291 km of low-loss high effective-area optical fiber, applying co-Raman propagation and third-order counter-Raman amplification.		Tu2H.2 • 15:00 Analysing the Effect of Quantum Network Intercon- nect on the Performance of Distributed Quantum Computing, Sima Bahrani', Rui Wang', Romerson Oliveira', Reza Nejabati', Dimitra E. Simeonidou'; 'Univ. of Bristol, UK. We investigate how a dynamically reconfigurable network supports short-range distributed quantum computing in a data center scenario by analysing the penalties and benefits of adopting such architecture in the NetSquid platform utilising two use cases.		OFCnet Optical Engineering and Maintenance 14:15–14:45, Theater III DCS2 • DCS Panel II: Open Line Systems - Can We Shape "Disaggregation" in One Direction? 14:15–15:45, Theater II Amphenol Sponsored Session
Tu2G.5 • 15:15 On the Road to 1-Pbps Systems: Experimental Demonstration of an Energy Efficient 500-Tbps Transatlantic Cable With 200-µm Outer Diameter Fibers, Alexis Carbo Meseguer', Andrea Quintana Zambrano', Jean-Christophe Antona', Juan uriel Esparza', Juliana Tiburcio de Araujo', Olivier Cour- tois', Vincent Letellier'; 'Alcatel Submarine Networks, France. We experimentally emulate an energy ef- ficient 500-Tbps subsea cable with 24 fiber pairs of 200-µm outer diameter Pure Silica Core Fiber and then we draw projections to assess how to achieve a 1-Pbps submarine cable for distances from 3000 to 12000 km.		Super-Sector Super-Sector /b>		15:00-16:00, Theater II SF4 • IEEE Future Directions: Space-Based Optical Communications and Networking 15:00-16:00, Theater III OFCnet Quantum Key Distribution 16:15-16:45, Theater III

Tuesday, 7 March

Room 1AB

Room 2

Room 3

Tu2C • Deployment and

Field Trials—Continued

Room 6C

Room 6E

Tu2A • Symposium: The Crucial Role of Photonics in Achieving the UN Sustainability Development Goals: Learnings and Opportunities I—Continued

Tu2A.4 • 15:30 Invited

The Role of Photonics in Sustainability and in Quantifying Greenhouse Gas Emissions, Thomas Karagiannis¹; ¹Microsoft Research Ltd, UK. Abstract not available. for Novel Applications— Continued

Tu2B • Photonic Devices

Tu2B.4 • 15:30

EAM-Integrated DBR-LD With 16-Channel and 100-Gbps/A PAM-4 Modulation, Su Ik Park^{1,4}, Oh Kee Kwon², Chul Wook Lee², Ki Soo Kim², Kyung Su Park³, Jae Hyun Jin1, Jung Hoon Kim1, Jong In Shim4; 1Essence photonics Inc., Korea (the Republic of); ²Electronics and Telecommunications Research Inst., Korea (the Republic of): ³Kangwon National Univ., Korea (the Republic of); ⁴Hanyang Univ. ERICA, Korea (the Republic of). An EAM-integrated DBR-LD is reported using a novel waveguide structure for efficient wavelength tuning, and a 16-channel 100-Gbps/λ PAM-4 operation with a grid of 150 GHz near 1290 nm are achieved successfully.

Tu2B.5 • 15:45

Uncooled Operation of Si Mach-Zehnder Modulator Integrated With Membrane Semiconductor Optical Amplifiers Inside Interferometer Arms, Takuma Aihara', Tatsurou Hiraki', Takuro Fujii', Koji Takeda', Hiroshi Fukuda', Takaaki Kakitsuka', Tai Tsuchizawa', Shinji Matsuo'; 'NTT Corporation, Japan. Membrane SOAs are integrated inside the interferometer arms of SI-MZM, in which the SOAs have on-chip gain of 11-5.3 dB at 25-80°C. In this configuration, SOAs can be used in saturated region suppressing pattern effect. Tu2C.6 • 15:30 Invited Advances in Fiber Technologies and Undersea Systems, Marsha A. Spalding'; 'SubCom LLC. USA. Abstract not available. Tu2E • Co-Packaged and PIC for Data Center Applications—Continued Tu2F • Al and Optimization in (Disaggregated) Networks—Continued

Tu2E.5 • 15:30 Invited

System-on-Chip Photonic Integrated Circuits in Silicon Photonics and the Role of Plasmonics, Claudia Hoessbacher¹, Benedikt Baeuerle¹, Eva De Leo¹, Wolfgang Heni¹, Stephan Koch¹, Juerg Leuthold²; ¹Polariton Technologies AG, Switzerland; ²Inst. of Electromagnetic Fields (IEF), ETH Zurich, Switzerland. This paper reviews photonic integrated circuits on silicon photonics. We focus on system on chips in applications for optical communications, sensing, and quantum technologies, and outline the role of plasmonics in silicon photonics.

Tu2F.6 • 15:30 Invited

Dynamic Optical Networks as Arcade Games: Lessons Learnt and Next Steps, Alejandra L. Beghelli¹, Moshe Simon¹; ¹Univ. College London, UK. We transformed the dynamic routing and spectrum allocation problem into an Arcade-like game and trained a reinforcement learning agent to play it. Preliminary results show the agent outperforms the K-SP-FF heuristic.

Tu2D.7 • 15:45 Resource Allocation in Optical Networks With Mode Group Division Multiplexing and Light Trail, Qiaolun Zhang¹, Yizhou Yang¹, Alberto Gatto¹, Massimo Tornatore¹; ¹Politecnico di Milano, Italy. We quantitatively evaluate resource efficiency enabled by mode-group-division multiplexing (MGDM) and light-trail (LT) in optical metro networks. Combining MGDM with LT reduces 95% of MIMO complexity of Full-MIMO with only 11% additional spectrum occupation.

16:00–16:30 Coffee Break, Upper Level Corridors and Exhibit Hall

Transmission—Continued Technol Tu2G.6 • 15:30 Example 120-Gb/s/Channel WDM PS-64QAM Transmission Dever 4,000-km ULAF Using Ring-Wise Neural Network Equalization, Bohan Sang', Miao Kong', Wen Chou', Jianyu Long', Li Zhao', Bing Ye ² , Weizhang Dever 4,000-km ULAF Using Ring-Wise Neural Network Equalization, Bohan Sang', Miao Kong', Wen Chou', Jianyu Long', Li Zhao', Bing Ye ² , Weizhang Diver 4,000-km ULAF Using Ring-Wise Neural Network Soth and Telecommunications, China: We realized 120-Gbit/s/channel WDM coherent transmission over 1,000-km ULAF utilizing a novel well-expandable Ring- Vise Neural Network equalizer (RW-NNE) targeted to S-64QAM signals. Results show that our RW-NNE Set Weith Stanget do	Panel: LiDAR Systems and logies with Integrated ics—Continued	Tu2H • Quantum Computing— Continued	Tu2J • Radio-Over-Fiber for 5G and Beyond Systems—Continued Tu2J.4 • 15:30 Enhancing NOMA Performance in Uplink MMW- RoF Mobile Fronthaul Systems by Using Index Mod- ulation, Shen-Chen Tsai', Jhih-Heng Yan ² , Kai-Ming	MW3 • MW Panel III: 800G / 128GBaud Pluggable Coherent - Key Technologies and Applications 14:00–15:30, <i>Theater I</i> OFCnet Optical Engineering and Maintenance
I20-Gb/s/Channel WDM PS-64QAM Transmission >ver 4,000-km ULAF Using Ring-Wise Neural Net- vork Equalization, Bohan Sang ¹ , Miao Kong ¹ , Wen hou ¹ , Jianyu Long ¹ , Li Zhao ¹ , Bing Ye ² , Weizhang Chen ² , Xiangjun Xin ³ , Bo Liu ³ , Jianjun Yu ¹ ; ¹ Fudan Iniv., China; ² ZTE Corp., China; ³ Beijing Univ. of ³ osts and Telecommunications, China. We realized I20-Gbit/s/channel WDM coherent transmission over 1,000-km ULAF utilizing a novel well-expandable Ring- Vise Neural Network equalizer (RW-NNE) targeted to S-64QAM signals. Results show that our RW-NNE			Enhancing NOMA Performance in Uplink MMW- RoF Mobile Fronthaul Systems by Using Index Mod-	Maintenance
vith 25.3%-lower complexity outperforms normal INE by 25% reach improvement.			Feng ¹ ; ¹ National Tsing Hua Univ., Taiwan; ² Chunghwa Telecom Co. Ltd, Taiwan. A novel OFDM-based index modulation (IM) assisted multi-users NOMA wireless uplink system is demonstrated in MMW-RoF mobile fronthaul. With IM, the proposed scheme achieves higher flexibility on spectral efficiency and power ratio than conventional NOMA.	14:15–14:45, Theater III DCS2 • DCS Panel II: Open Line Systems - Can We Shape "Disaggregation" in One Direction? 14:15–15:45, Theater II Amphenol Sponsored Session 15:00-16:00, Theater II
Fu2G.7 • 15:45 Real-Time 33.6 Tb/s (42 × 800 Gb/s) Unrepeatered fransmission Over 302 km Using ROPA System, lianJun Wu', Jiekui Yu', Jiasheng Liu', Qianggao Huang', Han Long', Shujuan Sun', Man Tan', Liyan Huang', Jian Xu'; 'Wuhan Guangxun Technology Co., Ltd, China. This paper demonstrates a record inrepeatered transmission with the capacity of 33.6 Tb/s (42 × 800 Gb/s) over 302.7 km (47.52 dB) with a single fiber configuration, using forward Raman pump, backward ROPA, and ultra-low loss & large effective area fiber.			Tu2J.5 • 15:45 Constellation Independent Look-up Table Enabled Digital Predistortion for Digital-Analog Radio-Over- Fiber System, Xiaobo Zeng ¹ , Yixiao Zhu ¹ , Yicheng Xu ¹ , Mengfan Fu ¹ , Hexun Jiang ¹ , Lilin Yi ¹ , Weisheng Hu ¹ , Qunbi Zhuge ¹ ; ¹ Shanghai Jiao Tong Univ., China. A constellation independent look-up table (LUT) method for transceiver nonlinearity predistortion in digital-analog radio-over-fiber system is proposed and experimentally demonstrated, achieving a SNR gain of 1.04dB. The table size can be reduced to 0.3% of the conventional LUT.	SF4 • IEEE Future Directions: Space-Based Optical Communications and Networking 15:00–16:00, Theater III SF1 • Design Considerations of Optical Connectivity in a Co- Packaged or On-Board Optics Switch 15:45–16:45, Theater I OFCnet Quantum Key Distribution 16:15-16:45, Theater III
16	:00–16:30 Coffee Break, Upp	per Level Corridors and Exhibit Hall		

Tuesday, 7 March

Room 1AB	Room 2	Room 3	Room 6C	Room 6D	Room 6E
16:30–18:30 Tu3A • Symposium: The Crucial Role of Photonics in Achieving the UN Sustainability Development Goals: Learnings and Opportunities II Presider: To be announced.	16:30–18:30 Tu3B • Photonic Integrated Circuits Presider: Milos Popovic; Boston Univ., USA	16:30–18:30 Tu3C • New Materials and Technologies Presider: Mitsuru Takenaka; The Univ. of Tokyo, Japan	16:30–18:30 Tu3D • Network Orchestration Presider: To be announced.	16:30–18:30 Tu3E • SDM - For Short Reach and Long-Haul Transmission Systems Presider: John Downie; Corning Inc, USA	16:30–18:30 Tu3F • Coexistence and Emerging Use-Cases of PON Presider: Annachiara Pagano; Telecom Italia, Italy
Tu3A.1 • 16:30 Invited Standards and Optical Technologies to Decrease Power Consumption: What is Being Done and Remains to be Done, Naveena Genay ¹ , Orange Labs, France. Abstract not available.	Tu3B.1 • 16:30 Tutorial Thin Film Lithium Niobate Integrated Circuits - a Tutorial Introduction and Over- view, Aman Mitchell'; 'Royal Melbourne Inst. of Technology, Australia. This tutorial will present a introduction and overview of integrated photonic circuits using the thin- film lithium niobate platform, starting with the fundamentals and history and leading	Tu3C.1 • 16:30 Invited Advances in Ultra-Wideband LiNbO3 Thin-Film Modulators, Xinlun Cai'; 'Sun Yat-Sen Univ., China. We review recent advances and design considerations for thin-film lithium niobate (TFLN) modulators with ultra-wide bandwidth and CMOS- compatible voltage, and we discuss how to approach the limits of the electro-optic	Tu3D.1 • 16:30 Heuristic-Assisted Deep Reinforcement Learning for Resource-Efficient and OoS-Guaranteed 5G RAN Slice Mi- gration in Elastic Metro Aggregation Optical Networks, Jiahua Gu ¹² , Min Zhu ¹² , Yunwu Wang ¹² , Xiaofeng Cai ¹² , Yuancheng Cai ¹² , Jiao Zhang ¹² , 'Southeast Univ, China; ² Purple Mountain Laboratory, China was a keynicit accided	Tu3E.1 • 16:30 Invited SDM and Parallelism in Submarine Cable Systems, Jin-Xing Cai'; 'SubCom LLC, USA. We review the most recent achievements in undersea transmission with high optical power efficiency and the associated enabling technologies and discuss the economics of SDM and the corresponding reduction in cost per bit for	Tu3F.1 • 16:30 Invited An Operator's Approach on the Co- existence in Future Optical Access Networks, Fabienne Saliou ¹ , Philippe Chanclou ¹ , Gael Simon ¹ , Jeremy Potet ¹ , Georges Gaillard ¹ , Stephane Le Huérou ¹ ; ¹ Orange, France. Main challenges of coexistence of future access transmissions are detailed. Important tradeoffs are

bandwidth of the TFLN-based modulators.

to a speculative outlook for future technolo-

gies and applications.

Tu3D.2 • 16:45 End-to-end Orchestration in Support of IIOT Applications Over Optically Interconnected TSN Domains, Albert Pagès', Fernando Agraz', Salvatore Spadaro'; 'Universitat Politècnica de Catalurya, Spain. We demonstrate that joint orchestration of TSN and optical network domains in support of IIOT applications reduces the TSN blocking by four orders of magnitude and the usage of high priority queues by a 28-100%.

China. We propose a heuristic-assisted

deep reinforcement learning framework

for resource-efficient and QoS-guaranteed 5G RAN slice migration in EONs, which

can optimize the spectrum resource

consumption, traffic migration, and power

consumption, simultaneously.

submarine cable systems.

identified: wavelength plan for triple PON

coexistence, optics for high optical budget, considering OOB and SRS penalties.

Multiplicity of technical implementations

for PtP and PON transceivers are against

future interoperability.

Tuesday, 7 March

Room 6F

Room 7AB

Room 8

Room 9

Show Floor Programming

SF1 • Design Considerations of

Optical Connectivity in a Co-

15:45–16:45, Theater I OFCnet Quantum Key

16:15-16:45, Theater III

Switch

Distribution

Packaged or On-Board Optics

16:30–18:30 Tu3G • Subsea and Sensing Networks

Presider: Ting Wang; NEC Laboratories America Inc., USA 16:30–18:30 Tu3H • Quantum Interconnect and Hybrid Classical/Quantum Systems Presider: Rui Wang; Univ. of Bristol, UK

16:30–18:30 Tu3I • High-Baud Rate Data Center Technologies Presider: Xiaodan Pang; Kungliga Tekniska Hogskolan, Sweden

16:30–18:30 Tu3J • W-Band Fiber-Wireless Links Presider: Anthony Ng'oma; Corning Inc, USA

Tu3G.1 • 16:30 Tutorial

High-Capacity Submarine Cables: Past, Present and Future, Georg Mohs¹; ¹SubCom LLC, USA. Abstract not available.

Tu3H.1 • 16:30 Tutorial

Quantum Interconnects, Galan Moody¹; ¹Electrical and Computer Engineering, Univ. of California Santa Barbara, USA. Quantum interconnects—devices that can transfer quantum states across different physical systems—are a vital component for quantum information technologies. In this tutorial, I will discuss recent advances and the challenges going forward.

Tu3l.1 • 16:30 Top-Scored 106.25 Gbaud 4-Level Pulse Amplitude Modulation Links Supporting (2x)100Gigabit Ethernet on Single Lambda, Oskars Ozolins^{1,2}, Armands Ostrovskis^{3,10}, Toms Salgals^{3,10}, Benjamin Krüger⁴, Fabio Pittala⁴, Mahdieh Joharifar², Richard Schatz², Di Che⁵, Yasuhiro Matsui⁶, Thomas Dippon⁴, Yuchuan Fan1, Aleksejs Udalcovs1, Marek Chacinski7, Urban Westergren², Lu Zhang⁸, Haik Mardoyan⁹, Xianbin Yu⁸, Sandis Spolitis^{3,10}, Sergei Popov², Markus Gruen⁴, Viačeslavs Bobrovs³, Hadrien Louchet⁴, Xiaodan Pang^{2,1}; ¹RISE Research Inst.s of Sweden AB, Sweden; ²KTH Royal Inst. of Technology, Sweden; ³Riga Technical Univ., Latvia; ⁴Keysight Technologies, Germany; ⁵Nokia Bell Labs, USA; ⁶Coherent, USA; ⁷Coherent, Sweden; ⁸Zhejiang Univ., China; ⁹Nokia Bell Labs, France; ¹⁰Communication Technologies Research Center, Riga Tecnical Univ., Latvia. We experimentally demonstrate and compare EML- and DML-based optical interconnects with 106.25 Gbaud NRZ-OOK and PAM4 for computing applications. The results show that both transmitters can be used to enable optical-amplification-free transmissions with low-complexity DSP.

Tu3l.2 • 16:45

56 GBaud PAM-4 Direct Detection With High-Speed Avalanche Photodiodes, Tobias Beckerwerth¹, Christoph Kottke¹, Volker Jungnickel¹, Ute Troppenz¹, Martin Moehrle¹, Patrick Runge¹, Martin Schell^{1,2}, ¹Fraunhofer Heinrich Hertz Inst., Germany; ²Technical Univ. Berlin, Germany. We demonstrate 56 GBaud PAM-4 transmission by using a high-speed waveguide avalanche photodiode (WG APD) and an electro absorption modulated laser (EML). Compared to a PIN photodiode, the WG APD reduces the power budget in a B2B setup by 6 dB.

Tu3J.1 • 16:30 Real-Time 125-Gb/s DP-QPSK Signal Delivery Over 150 m Based on a Dual-Polarized Single-Channel W-Band Wireless Link Enabled by Photonics, Yuancheng Cai^{1,2}, Min Zhu^{1,2}, Jiao Zhang^{1,2}, Mingzheng Lei², Bingchang Hua², Yucong Zou², Wei Luo¹, Shitong Xiang¹, Liang Tian², Junjie Ding³, Like Ma⁴, Yongming Huang^{1,2}, Jianjun Yu^{2,3}, Xiaohu You^{1,2}; ¹National Mobile Communications Research Laboratory, Southeast Univ., China; ²Purple Mountain Laboratories, China; ³Fudan Univ., China; ⁴China Mobile Research Inst., China. In a photonics-enabled fiber-wireless-fiber system, we successfully demonstrate the first realtime 125-Gb/s DP-QPSK signal delivery over a 150-m dual-polarized single-channel wireless link with a record of real-time transmission capacity and wireless distance at W band.

Tu3J.2 • 16:45

BI-Directional 5G NR Fiber-Wireless Systems With Single-Carrier Optical Modulation and Phase Modulation Scheme, Yu-Sheng Lin', Wei-Cheng Fan', Cheng-Jun Lin', Chung-Yi Li', Hai-Han Lu'; 'National Taipei Univ. of Technology, Taiwan; ²National Taipei Univ., Taiwan. 5G MMW/sub-THz signals through a bi-directional fiber-wireless system with single-carrier optical modulation for downstream and PM scheme for upstream are implemented. It shows promise for performing 5G NR communication towards MMW and sub-THz bands.

Room 1AB	Room 2	Room 3	Room 6C	Room 6D	Room 6E
Tu3A • Symposium: The Crucial Role of Photonics in Achieving the UN Sustainability Development Goals: Learnings and Opportunities II—Continued	Tu3B • Photonic Integrated Circuits—Continued	Tu3C • New Materials and Technologies—Continued	Tu3D • Network Orchestration—Continued	Tu3E • SDM - For Short Reach and Long-Haul Transmission Systems— Continued	Tu3F • Coexistence and Emerging Use-Cases of PON—Continued
Tu3A.2 • 17:00 Invite The Role of Photonics in Sustainability and in Quantifying Greenhouse Gas Emissions, Thomas Karagiannis ¹ , Microsoft Research Ltd, UK. Abstract not available.		Tu3C .2 • 17:00 200 Gbit/s Transmitter Based on a Spin- on Ferroelectric Waveguide Modulator, Shiyoshi Yokoyama', Jiawei Mao', Futa Uemura', Hiromu Sato', Guo-Wei Lu ² ; 'Kyushu Unix, Japan; ² The Unix. of Aizu, Japan. We demonstrate a 200 Gbit/s PAM4 transmitter using a ferroelectric waveguide Mach-Zehnder modulator. It has BER below FEC threshold, drive voltage of 1.3 V _{pp} , and possible reliable operation.	Tu3D.3 • 17:00 Invited End-to-End Interdomain Transport Net- work Slice Management Using DLT- Enabled Cloud-Based SDN Controllers, Ricard Vilalta', Pol Alemany', Lluis Gifre', Ricardo Martínez', Ramon Casellas', Raul Muñoz', 'CTTC, Spain. This paper discusses the advantages and challenges of multiple architectures that consider the negotiation of inter-domain transport network slices using blockchain technologies. To this end, we presents results obtained using cloud-native ETSI TeraFlowSDN controller.	Tu3E.2 • 17:00 108-Ch (12-Core×9-WDM) Self-Ho- modyne Transmission Using Only a Single Laser for 8.64-Tb/s Short-Reach Optical Links, Shota Ishimura ¹ , Takashi Kan ¹ , Shuntaro Maeda ² , Takuo Tanemura ² , Yoshiaki Nakano ² , Hidenori Takahashi ¹ , Takehiro Tsuritani ¹ ; 'KDDI Research, Inc., Japan; ² The Univ. of Tokyo, Japan. We demonstrate 108-ch (12-core×9-WDM) frequency comb-based self-homodyne multi-core transmission with a net bit rate of 8.64-Tb/s. This demonstration shows the feasibility of high-capacity short-reach SDM/ WDM systems using only a single laser.	Tu3F.2 • 17:00 Real-Time, low Latency Virtual DBA Hypervisor for SLA-Compliant Multi- Service Operations Over Shared Passive Optical Networks., Arijeet Ganguli', Frank Slyne', Marco Ruffini', 'Univ. of Dublin Trinity College, Ireland. We present a heuristic algorithm for a PON upstream scheduling hypervisor, supporting low latency services with strict service-level agreement. The algorithm achieves near- optimal performance while running in only 3.5 us, thus operating in real-time.
		Tu3C .3 • 17:15 200 Gbit/s Barium Titanate Modulator Using Weakly Guided Plasmonic Modes, Daniel Chelladurai', Manuel Kohli', Bertold Ian Bitachon', Laurenz Kulmer', Tobias Blatter', David Moor', Joel Winiger', An- dreas Messner', Clarissa Convertino', Felix Eltes', Yuriy Fedoryshyn', Juerg Leuthold', 'ETH Zurich, Switzerland; 'Lumiphase AG, Switzerland. A plasmonic Mach-Zehnder modulator based on thin-film barium titanate is introduced demonstrating line rates up to 200 Gbit's. The structure enables low insertion loss and high optical power stability without a DC bias during operation.		Tu3E.3 • 17:15 Experimental Investigation of Reduced Complexity MIMO Equalization in a 55-Mode Fiber SDM Transmission Sys- tem, Ruby S. Bravo Ospina ^{2,1} , Georg Rademacher ² , Ruben S. Luis ² , Benjamin J. Puttnam ² , Nicolas K. Fontaine ³ , Mikael Mazur ³ , Haoshuo Chen ³ , Roland Ryf ³ , David Neilson ³ , Daniel Dahl ⁴ , Joel Carpenter ⁴ , Pierre Sillard ⁴ , Frank Achten ⁵ , Marianne Bigot ⁴ , Darli Mello ¹ , Hideaki Furukawa ² ; ¹⁷ EEC, Univ. of Campinas, Brazil; ² Photonic Network Laboratory, National Inst. of Infor- mation and Communications Technology, Japan; ³ Nokia Bell Labs, USA; ⁴ Prysmian Group, France; ⁵ Prysmian Group, Nether- lands; ⁴ Univ. of Queensland, Australia. We investigate the MIMO equalizer complexity reduction by selective filter deactivation in a 25.9 km 55-mode SDM transmission system. We demonstrate a 21.5% equalizer complexity reduction at the cost of a 4.9% decrease in data rate.	Tu3F.3 • 17:15 Experimental Assessment of Stimulated Raman Scattering Impairments Between XGS-PON and SOG-PON, Fabienne Saliou ¹ , Gael Simon ¹ , Jeremy Potet ¹ , Philippe Chanclou ¹ ; ¹ Orange, France. Critical 0.67dB of power depletion due to SRS on the upstream signals of SOG-(E)PON US and XGS-PON US is measured experimentally when contra-propagating in 20km SMF with SOG-(E)PON Downstream

Tuesday, 7 March

Room 6FRoom 7ABRoom 8Room 9
Tu3G • Subsea and Sensing Networks—ContinuedTu3H • Quantum Interconnect and Hybrid Classical/Quantum Systems—ContinuedTu3I • High-Baud Rate Data Center Technologies—ContinuedTu3J • W-Band Fiber-Wireless Links—Continued

Tu3I.3 • 17:00 Invited

The Future of Multi-Terabit Datacenter Interconnects Based on Tight Co-Integration of Photonics and Electronics Technologies, Maria Spyropoulou¹, Giannis Kanakis¹, Giorgos Brestas¹, Yuqing Jiao², Salim Abdi², Zhaowei Chen², Desalegn Feyisa Wolde², Ripalta Stabile², Nicola Calabretta², K.A. Williams², Virginie Nodjiadjim³, Romain Hersent³, Agnieszka Konczykowska³, Muriel Riet³, Richard Schatz⁴, Oskars Ozolins^{4,5}, Xiaodan Pang^{4,5}, Mahdieh Joharifar⁴, Jakub Zvěrina⁶, Martin Zoldák⁶, Boaz Atias⁷, Paraskevas Bakopoulos⁷, Elad Mentovich⁷, Hercules Avramopoulos¹; ¹Photonics Research Communications Laboratory, School of Electrical and Computer Engineering, National Technical Univ. of Athens, Greece; ²Eindhoven Hendrik Casimir Inst. (EHCI), Eindhoven Univ. of Technology, Netherlands; ³III-V Lab, France; ⁴School of SCI, KTH Royal Inst. of Technology, Sweden; ⁵RISE Research Inst.s of Sweden AB, Sweden; ⁶Argotech A.S., Czechia; ⁷NVIDIA, Israel. We propose a novel co-packaged optical transceiver architecture capable of operating at 112 Gbaud per lane and scalable to 1.6 Tb/s capacity and beyond for next generation 51.2T and 102.4T digital switches.

Tu3J.3 • 17:00 Invited

Prospects and Technologies for Mobile Terahertz 6G Communications, Jonas Tebart¹, Peng Lu¹, Thomas Haddad¹, Shuya Iwamatsu¹, Andreas Stohr¹; ¹Universität Duisburg-Essen, Germany. Prospects and challenges for mobile 6G communications using terahertz frequencies are discussed. For the first time, THz wireless communications with 15 Gbps to multiple mobile users employing a photonicassisted beam steering antennas is experimentally demonstrated.

Room 1AB	Room 2	Room 3	Room 6C	Room 6D	Room 6E
Tu3A • Symposium: The Crucial Role of Photonics in Achieving the UN Sustainability Development Goals: Learnings and Opportunities II—Continued	Tu3B • Photonic Integrated Circuits—Continued	Tu3C • New Materials and Technologies—Continued	Tu3D • Network Orchestration—Continued	Tu3E • SDM - For Short Reach and Long-Haul Transmission Systems— Continued	Tu3F • Coexistence and Emerging Use-Cases of PON—Continued
Tu3A.3 • 17:30 Invited Energy Saving of Optical Access Sys- tems , Dezhi Zhang ¹ , Zhe Du ² ; 'China Telecom Corp Ltd, Beijing Res Inst, China; ² China Telecom Research Inst., China. This work reviews the standardization work of optical access networks in the field of energy saving, and introduces the development and application of energy saving technologies for optical access networks.	Tu3B.2 • 17:30 Top-Scored Integrated Microlens Coupler for Pho- tonic Integrated Circuits, Jianheng Luo', Johannes Henriksson', Myung-Ki Kim², Daniel Klawson', Chun-Yuan Fan', Ming C. Wu'; Junix of California Berkeley, USA; ² KU-KIST Graduate School of Converging Science and Technology, Korea Univ., Korea (the Republic of). We design and experimentally demonstrate a new silicon photonic fiber coupling method using integrated microlens couplers. Efficient and broadband coupling to a single mode fiber with the best coupling loss of 0.9 dB is achieved	Tu3C .4 • 17:30 High-Performance EO Polymer/Si and InP Nano-Hybrid Optical Modulators in O-Band and C-Band Wavelengths, Junichi Fujikata', Hiromu Sato ² , Alisa Bannaron ² , Guo-Wei Lu ³ , Shiyoshi Yokoyama ² , 'Tokushi- ma Univ, Japan; ² Inst. for Materials Chem- istry and Engineering, Kyushu Univ., Japan; ³ Division of Computer Engineering, Aizu Univ., Japan. We present high-efficiency of 0.18Vcm and 252Gbps of PAM-4 high- speed operation for EO polymer/Si and InP hybrid optical modulators in C-band wavelengths. We also demonstrate record high-efficiency of 0.35Vcm and high-speed operation in O-band wavelengths.	Tu3D.4 • 17:30 Disaggregated Optical Network Orches- tration Based on the Physical Layer Digital Twin, Giacomo Borraccini', Renato Ambro- sone'?, Alessio Giorgetti', Stefano Straullu ⁴ , Francesco Aquilino ⁴ , Emanuele Virgillito', Andrea D'Amico', Rocco Dingillo', Nicola Sambo ⁵ , Filipo Cugini ⁴ , 'Politecnico di Torino, Italy; ² Consortium GARR, Italy; ³ IEIIT-CNR, Italy; ⁴ LINKS Foundation, Italy; ³ IEIIT-CNR, Italy; ⁴ LINKS Foundation, Italy; ¹ an open and disaggregated optical network is presented, focusing on the orchestration of the physical layer digital twin and the optical network controller, implemented on an experimental multi-vendor triangular- topology setup.	Tu3E.4 • 17:30 Invited Technologies for Optical Submarine Cables, Past Present and Future, Yuichi Nakamura', Hitoshi Takeshita'; 'NEC Cor- poration, Japan. Optical submarine cables are critical infrastructures that carry more than 80% of theInternet traffic between continents. An overview of the technology used in past and present opticalsubmarine cables is presented.	Tu3F.4 • 17:30 Demonstration of Industrial Network Ap- plications by PHY Softwarization for Fully Virtualized Access Networks, Takahiro Suzuki', Yushi Koyasako', Sang-Yuep Kim', Jun-ichi Kani', Tomoaki Yoshida'; 'NIT Cor- poration, Japan. This paper demonstrates that PHY processing for industrial network applications and PON can be realized on a common general-purpose server for flexible service creations; it realizes the level of latency performance required by IRT communication.
	Tu3B.3 • 17:45 On-Chip Universal Linear Optics Using a Ax4 Silicon Photonic Coherent Crossbar, George Giamougiannis', Militadis Moralis- Pegios', Apostolos Tsakyridis', Nikos Bamiedakis², David Lazovsky², Nikos Pleros', 'Aristoteleio Panepistimio Thessalonikis, Greece, 'Zelestial Al, USA. We demonstrate the first on-chip and fidelity-restorable universal linear optical circuit that relies on a novel 4x4 silicon photonic coherent acterization yields a fidelity of 99.93±0.06%, calculated over 10,000 arbitrary matrices	Tu3C .5 • 17:45 Invited An Active Visible-Light Integrated Pho- tonics Platform on 200-mm Si, Wesley D. Sacher ¹ , Yiding Lin ¹ , Hong Chen ¹ , Saeed S. Azadeh ¹ , Zheng Yong ^{1,2} , Xianshu Luo ³ , Hongyao Chua ³ , Jason C. C. Mak ² , Alperen Govdeli ^{1,2} , Ankita Sharma ^{1,2} , Jared C. Mikkelsen ¹ , Xin Mu ^{1,2} , Andrei Stalmashonak ¹ , Guo-Qiang Lo ³ , Joyce Poon ^{1,2} , ¹ Max Planck Inst. of Microstructure Physics, Germany; ² Department of Elec- trical and Computer Engineering, Univ. of Toronto, Canada; ³ Advanced Micro Foundry Pte. Ltd., Singapore. We present a foundry-fabricated monolithically integrated photonics platform for the visible spectrum (A=445–640nm) with two layers of silicon nitride waveguides, silicon photodiodes, efficient undercut thermo-optic phase	Tu3D.5 • 17:45 Dynamic Bypass of Wavelength Switch- ing in SDN-Enabled WDM VNTs Over SDM Networks With High bit-Rate Optical Channels, Raul Muñoz', Carlos Manso', Filippos Balasis ² , Daiki Soma ² , Shohei Beppu ² , Ramon Casellas ¹ , Lluis Gifre ¹ , Ricard Vilalta ¹ , Ricardo Martínez ¹ , Noboru Yoshikane ² , Takaehiro Tsuritani ² ; 'CTTC, Spain; ² KDDI Research, Japan. We experimentally demonstrate an SDN architecture for WDM VNTs to offload pass-through high bit-rate optical channels from overloaded ROADMs by provisioning spatial channels between the source and destination ROADM's add-drop stages, and rerouting the optical channels	Tu3E.5 • 18:00 Top-Scored	Tu3F.5 • 17:45 Deterministically Scheduled PON for Industrial Applications, Konstantinos (Kos- tas) Christodoulopoulos', Sarvesh Bidkar ² , Thomas Pfeiffer ² , Rene Bonk ² ; Informatics and Telecommunications, Univ. of Athens, Greece; ² Nokia Bell Labs, Germany. We propose a deterministic scheduling scheme for TDM-PON upstream bursts to achieve low latency and jitter with high throughput efficiency. We demonstrate co-scheduling of TDM-PON with an Ethernet Time Sensitive Network to serve industrial applications.
	Large Scale Opto-Electro-Mechanical Integrated Circuits, Ming C. Wu ¹ ; ¹ Univ. of California Berkeley, USA. Abstract not available.	shifters, in situ trimming, and electro- thermal MEMS devices.	A Programmable Ethernet Transport Pack- etponder Using Common Compact Form Factor Pluggable Transceivers to Support Novel DWDM Architectures, Julie Raulin ^{3,1} , Gawen Davey ² , Yuliya Ver- bishchuk ^{3,1} , Alexander Jeffries ² , Cormac J. Sreenan ¹ , Fatima C. Garcia Gunnind ³	Real-Time 6-Mode 19-Core Fiber Trans- mission, Shohei Beppu', Masahiro Kikuta ² , Daiki Soma', Yoichi Yaegashi ² , Koji Igarashi ³ , Masahiro Shigihara ² , Kazuhiko Aizawa ² , Noboru Yoshikane ¹ , Takehiro Tsuritani ¹ ; 'KDDI Research, Inc., Japan; ² NEC Plat- forms Itd. Japan; ² Osaka Jibiy, Japan	Fiber to the Room (FTTR): Standards and Deployments, Xuming Wu ¹ , Yan Zeng ² , Xiaoshu Si ¹ , Xiang Wang ² , Xiang Liu ³ , ¹ Hua- wei Technologies Co., Ltd., China; ² Huawei Hong Kong Research Center, China. We ruiswu recent achurace in the field doplay.

OFC 2023 • 05–09 March 2023

architectures.

J. Sreenan¹, Fatima C. Garcia Gunning³;

¹School of Computer Science and Informa-

tion Technology, Univ. College Cork, Ireland;

²APS-Networks, Netherlands; ³Photonics

Systems Group, Tyndall National Inst.,

Ireland. We introduce a packetponder

comprising a programmable packet switch

with P4 ASIC containing a mixture of "grey" and tunable DWDM pluggable transceivers that, combined with ROADMs, introduces novel possibilities for Ethernet transport forms, Ltd., Japan; ³Osaka Univ., Japan.

We demonstrate the real-time few-mode

multicore fiber transmission for the first time.

The C- and L-band WDM DP-QPSK signals

transmitted over an 11-km 6-mode 19-core

fiber were demodulated in real-time by an

FPGA-based MIMO DSP.

review recent advances in the field deploy-

ment of fiber-to-the-room (FTTR) systems

for Gigabit/s home networking and in the

global standardization of the FTTR solution.

A novel centralized Wi-Fi access network

(C-WAN) architecture is described.

Tuesday, 7 March

Room 6F	Room 7AB	Room 8	Room 9
Tu3G • Subsea and Sensing Networks—Continued	Tu3H • Quantum Interconnect and Hybrid Classical/Quantum Systems—Continued	Tu3l • High-Baud Rate Data Center Technologies—Continued	Tu3J • W-Band Fiber-Wireless Links—Continued
Tu3G.2 • 17:30 Invited Cost/Bit Scaling Opportunities in Submarine Cables, Eduardo F. Mateo'; 'NEC Corporation, Japan. The cost/bit of submarine networks has experienced enormous reductions in the past three decades. This decline starts to show signs of fatique. This paper	Tu3H.2 • 17:30 Top-Scored Co-Propagation of 6 Tb/s (60*100Gb/s) DWDM & QKD Channels With ~17 dBm Aggregated WDM Power Over 50 km Standard Single Mode Fiber, Paulette Gavignet ¹ , François Mondain ¹ , Er- wan Pincemin ¹ , Andy Grant ² , Lee Johnson ² , Robert	Tu3I.4 • 17:30 Net 100 Gb/s/λ VCSEL+MMF Nonlinear Digital Pre- Distortion Using Convolutional Neural Networks, Leonardo Minelli ¹ , Fabrizio Forghieri ² , Tong Shao ³ , Roberto Gaudino ¹ ; ¹ Politecnico di Torino, Italy; ² Cisco Photonics, Italy; ³ Cisco Optical GmbH, Germany. We	Tu3J.4 • 17:30 Bidirectional Full-Duplex Delivery of 103Gbps PS-256QAM Signals Over 20-km SMF and 4600 m Wireless, Weiping Li ¹ , Jianjun Yu ¹² , Feng Wang ¹ , Xiaoxue Ji ¹ , Xiongwei Yang ¹ , Wen Zhou ¹ , Tangyac Xie ³ , Jianguo Yu ³ , Jiao Zhang ⁴ , Min Zhu ² , Feng Zhao ⁴

Tu3H.3 • 17:45

Efficiency is proposed.

Optimization of Classical Light Wavelengths Coexisting With C-Band Quantum Networks for Minimal Noise Impact, Jordan M. Thomas¹, Gregory S. Kanter¹, Si Xie², Joaquin Chung³, Raju Valivarthi⁴, Cristián Peña², Raikumar Kettimuthu³, Panagiotis Spentzouris², Maria Spiropulu⁴, Prem Kumar¹; ¹Northwestern Univ., USA; ²Fermi National Accelerator Laboratory, USA; ³Argonne National Laboratory, USA; ⁴California Inst. of Technology, USA, We investigate the optimal coexisting classical light wavelengths to use alongside C-band quantum networks to minimize noise from spontaneous Raman scattering and discuss techniques for optimizing coexisting time synchronization systems for teleportation and entanglement swapping.

Woodward², James Dynes², Andrew Shields²; ¹Orange

Innovation, France: 2(2) Toshiba Europe Ltd, UK, We

report the co-propagation, over 50km of SSMF, of

the quantum channel (1310nm) of a QKD system

with ~17dBm total power of DWDM data channels

(1550nm range). A metric to evaluate Co-propagation

Tu3G.3 • 18:00

Surface and Underwater Surveillance Based on Highly Sensitive Distributed Fiber-Optic Hydrophone, Junfeng Chen¹, Ke Ai¹, Hao Li¹, Xiangpeng Xiao¹, Cunzheng Fan¹, Zhijun Yan¹, Qizhen Sun¹; ¹Huazhong Univ of Science and Technology, China. We report field test results of surface and underwater surveillance based on fiber-optic distributed acoustic sensing (DAS) and highly sensitive distributed fiberoptic hydrophone (DFOH). Various intrusive targets like boat, frogman and etc. are detected.

decline starts to show signs of fatigue. This paper

analyzes the causes and discusses opportunities to

address this saturation.

Tu3H.4 • 18:00

Demonstration of Quantum Channel Monitoring via Quantum Wrappers, Mehmet Berkay On¹, Sandeep

Kumar Singh¹, Gamze Gul², Gregory S. Kanter², Roberto Projetti³, Prem Kumar², S. J. Ben Yoo¹; ¹Univ. of California. Davis. USA: ²Northwestern Univ., USA; ³Politecnico di Torino, Italy. We experimentally demonstrate quantum channel monitoring by wavelength-time multiplexing of classical wrapper bits with quantum payloads. Bit-error-rate measurements of 5 Gb/s classical bits infer the coincidence-toaccidental ratio of the quantum channel up to 13.3 dB.

Tu3l.5 • 17:45

Tu3I.6 • 18:00

cal transmitters.

128-Gbaud PAM4 O-Band Transmission Using Advanced MLSE With Simple LLR Calculation for SD-FEC Scheme, Shuto Yamamoto¹, Hiroki Taniguchi¹, Akira Masuda¹, Masanori Nakamura¹, Yoshiaki Kisaka¹: ¹NTT Corporation, Japan, We propose simple methods to calculate LLR for IM-DD system with MLSE and SD-FEC and show that an advanced MLSE with the LLR calculation methods makes NGMI higher in 128-Gbaud PAM4 in 20-GHz bandwidth limitation.

experimentally demonstrate VCSEL+MMF nonlinear

Digital Pre-Distorters, optimized using Convolutional

Neural Networks, for fulfilling the IEEE P802.3db™/

D3.2 TDECQ requirements for net 100 Gb/s/λ opti-

threshold of 4.2×10-2. Tu3.J.6 • 18:00

8×250 Gbit/s PAM4 Transmission Over 1 km Single Integrated W-Band Photonic-Wireless Transmit-Mode Fiber With an all-Silicon LAN WDM Transmitter Enabled by Silicon Microring Modulator and ter, Penghui Xia^{2,1}, Zhongya Li³, Nannan Ning¹, Qiang on-Chip Dual-Mode DFB Laser, Xuying Liu¹, Wenjia Zhang², Xiaoqing Jiang¹, Jianyi Yang¹, Junwen Zhang³, Zhang¹, Jiang Yue¹, Dan Lu², Fan Yang³, Zuyuan He¹; Hui Yu^{2,1}: ¹Zheijang Univ., China: ²Zheijang Lab, China: ¹State Key Laboratory of Advanced Optical Commu-³Fudan Univ., China, We demonstrate 2 Tbit/s (8×250 nication Systems and Networks, Shanghai Jiaotong Gbit/s) and 1.6 Tbit/s (8×200 Gbit/s) 4-level pulse Univ., China; ²Key Laboratory of Semiconductor amplitude modulation (PAM4) transmissions over 1 km Material Science, Inst. of Semiconductors, Chinese and 10 km single mode fibers (SMF) with an all-silicon Academy of Sciences, China: ³School of Electronic wavelength division multiplexing transmitter chip. Science and Engineering, Univ. of Electronic Science and Technology of China, China. We propose an integrated W-band transmitter enabled by dualmode DFB laser and silicon microring modulator for next generation wireless communication. Error free transmission of 10 Gb/s communication at 85 GHz have been experimentally demonstratedby utilizing

off-chip free-running and on-chip DFB laser.

Huaijong Lin⁵: ¹Fudan Univ., China: ²Purple Mountain

Laboratories, China: ³Beijing Univ. of Posts and

Telecommunications, China: ⁴Xi'an Univ. of Posts and

Telecommunications, China: ⁵Harbin Inst. of Technol-

ogy. China. We have experimentally demonstrated

photonics-aided bidirectional full-duplex delivery of 103Gbps PS-256QAM signals over 20-km single-

mode fiber (SMF) wireline link and 4600 m wireless link based on the polarization-division-multiplexing

8192QAM Signal Transmission Over 20-m Wireless

Distance at W-Band Using Delta-Sigma Modula-

tion, Jiaxuan Liu¹, Jianjun Yu¹, Jianyu Long¹, Mingxu

Wang¹, Chengzhen Bian¹, Kaihui Wang¹, Weiping Li¹,

Jiao Zhang², Min Zhu², Tangyao Xie³, Jianguo Yu^{3,2},

Feng Zhao4; ¹Fudan Univ., China; ²Purple Mountain

Laboratories, China; ³Beijing Univ. of Posts and

Telecommunications, China: ⁴School of Electronic

Engineering, Xi'an Univ. of Posts and Telecommunications, China. We experimentally demonstrate a

W-band photon-assisted millimeter-wave transmission

system using delta-sigma modulation and envelope

detection. The proposed IM/DD-MMW-RoF system

can support 8192 QAM signaling over a 20-meter wireless link using DSM while meeting the SD-FEC

scheme and advanced DSPs.

Tu3.J.5 • 17:45

Room 1AB	Room 2	Room 3	Room 6C	Room 6D	Room 6E
Tu3A • Symposium: The Crucial Role of Photonics in Achieving the UN Sustainability Development Goals: Learnings and Opportunities II—Continued	Tu3B • Photonic Integrated Circuits—Continued	Tu3C • New Materials and Technologies—Continued	Tu3D • Network Orchestration—Continued	Tu3E • SDM - For Short Reach and Long-Haul Transmission Systems— Continued	Tu3F • Coexistence and Emerging Use-Cases of PON—Continued
		Tu3C .6 • 18:15 Heterogeneously Integrated Near-Infra- red DFB Laser on Tantalum Pentoxide, Ali Eshaghian Dorche ²¹ , Nima Nader', Eric J. Stanton ^{2,1} , Sae Woo Nam', Richard P. Mirin'; 'National Inst of Standards & Tech- nology, USA; 'Physics, Univ. of Colorado Boulder, USA. We present a diode laser heterogeneously integrated with tantalum pentoxide waveguides on a silicon substrate emitting 5 mW continuous-wave power per facet at 1020 nm wavelength with a 14 mA threshold and a 22 dB side-mode- suppression ratio.	Tu3D.7 • 18:15 DRL for VNF Placement in Inter-Data Center Elastic Optical Networks, Carlos Hernandez-Chulde', Ramon Casellas', Ricardo Martínez', Ricard Vilalta', Raul Muñoz', 'Packet Optical Networks and Services, Centre Tecnologic de Telecomu- nicacions de Catalunya (CTTC/CERCA), Spain. A novel DRL solution for service provisioning over a cloud/EON stratum is presented. The benefit of DRL is that it can be adopted in different (unseen) EON topologies attaining better service blocking compared to traditional heuristics.	Tu3E.6 • 18:15 Real-Time 179.2Tb/s Transmission Using Commercial 400Gb/s Transceivers Over 350 km Multicore Fiber, Lipeng Feng ¹ , Anxu Zhang ¹ , Hao Guo ² , Dongxiang Wang ² , Chuyu Peng ² , Yuyang Liu ¹ , Kai Lu ¹ , Hao Liu ¹ , Xiaoli Huo ¹ , Junjie Li ¹ ; 'China Telecom Research Inst., China, 'PiberHome Fujikura Optic Technology Co.,Ltd, China. We firstly demonstrate the feasibility of 179.2 Tb/s transmissions over a 350 km 7-core fiber link while considering the splicing loss and link budget reservation for field deployment, using real-time 400Gb/s/carrier commercial transceivers.	

17:15–18:15 Exhibitor Reception, Center Terrace

18:30–20:00 Conference Reception, Upper Level, Ballroom 20BCD

19:30-21:30 Rump Session: Is the Silicon Photonics Platform about to be Standardized, Diversified or Supplanted?, Room 6F

Room 6F	Room 7AB	Room 8	Room 9
Tu3G • Subsea and Sensing Networks—Continued	Tu3H • Quantum Interconnect and Hybrid Classical/Quantum Systems—Continued	Tu3l • High-Baud Rate Data Center Technologies—Continued	Tu3J • W-Band Fiber-Wireless Links—Continued
Tu3G.4 • 18:15 Top-Scored Field Trial of FPGA-Based Real-Time Sensing Transceiver Over 524km of Live Aerial Fiber, Mikael Mazur ¹ , Dennis Wallberg ² , Lauren Dallachiesa ¹ , Erik Börjeson ³ , Roland Ryf ¹ , Magnus Bergroth ² , Borje Josefsson ² , Nicolas K. Fontaine ¹ , Hashuo Chen ¹ , David Neilson ¹ , Jochen Schröder ³ , Per Larsson- Edefors ³ , Magnus Karlsson ³ ; ¹ Nokia Bell Labs, USA; ² Sunet, Sweden; ² Chalmers Univ. of Technology, Sweden. We perform fiber sensing over a 524km live network using a real-time coherent transceiver prototype. Polarization and length changes from the link consisting exclusively of aerial fiber wound around high-voltage power cables are continuously monitored.	Tu3H.5 • 18:15 Programmable, Latency-Aware and Dynamic Quantum-Secured Optical Network With Key Re- fresh Rate Negotiation and QKD Sharing, Romerson Oliveira ¹ , Ekin Arabul ¹ , Rui Wang ¹ , Constantinos Vrontos ¹ , Reza Nejabati ¹ , Dimitra E. Simeonidou ¹ ; ¹ Univ. of Bristol, UK. We have demonstrated a dynamic QKD network with a latency-aware and QKD-capacity sensitive algorithm. This scheme negotiates the optimal key refresh period and assigns priorities for preferred channels. Network reconfiguration time is within 49ms.	Tu31.7 • 18:15 19-Core SDM Self-Homodyne Coherent Transmis- sion Using Fan-in/Fan-Out Photonic Lantern, Min Yang', Chengkun Cai', Yize Liang', Lei Shen ³ , Yanjun Zhu ² , Hua Zhang ⁴ , Chaonan Yao ⁴ , Yuchen Shao ⁴ , Lei Zhang ³ , Changkun Yan ³ , Liubo Yang ³ , Ruichun Wang ³ , Jun Chu ³ , Jian Wang ¹ ; Huazhong Univ. of Science and Techn, China; ² Hisence Broadband Inc., USA; ² State Key Laboratory of Optical Fiber and Cable Manufac- ture Technology: China; ⁴ Hisence Broadband Multime- dia Technologies Co., Ltd., China. We experimentally demonstrate space-division multiplexing (SDM) self- homodyne coherent transmission in 19-core fiber with low-cost, MHz-linewidth distributed feedback (DFB) laser, using fan-in/fan-out (FIFO) photonic lantern based on femtosecond laser direct writing technique.	Tu3J.7 • 18:15 Autoencoder Learning of Nonlinear Constellation Shape for Fiber-Wireless Convergence System, Xiang Liu ^{1,2} , Jiao Zhang ^{1,2} , Min Zhu ^{1,2} , Weidong Tong ^{1,2} , Zhigang Xin ¹ , Yunwu Wang ^{1,2} , Mingzheng Lei ² , Bingchang Hua ² , Yuancheng Cai ^{1,2} , Yucong Zou ² , Jianjun Yu ^{2,3} , 'Southeast Univ, China; 'Purple Mountain Laboratories, China; 'Fudan Univ, China, We propose and experimentally demonstrate a nove nonlinear constellation shape auto-optimization method with a complex-valued 2D-ANN equalizer. Up to 70% lower BER compared with the conventional format is achieved at 50 Gbps in fiber-MMW system.

17:15–18:15 Exhibitor Reception, Center Terrace

18:30–20:00 Conference Reception, Upper Level, Ballroom 20BCD

19:30-21:30 Rump Session: Is the Silicon Photonics Platform about to be Standardized, Diversified or Supplanted?, Room 6F

Room 1AB

07:30–08:00 Coffee Break, Upper Level Corridors

07:00–08:30 International Women's Day Breakfast, Upper Level, Ballroom 20A

08:00–10:00 W1A • Advanced Photodetectors Presider: Martin Schell; Fraunhofer HHI, Germany

W1A.1 • 08:00 Invited

High-Speed Photodetectors, Patrick Runge'; 'Fraunhofer HHI, Germany. The paper highlights recent developments of high-speed photodetectors for 200 Gb/s and beyond communication applications. Designs for standard photodiode types as well as avalanche photodiode types with internal amplification are reviewed in terms of their high-speed performance. 08:00–10:00 W1B • Special Session: Photonics for Visible Wavelengths I Presider: Cheryl Sorace-Agaskar; MIT Lincoln Laboratory, USA

Room 2

W1B.1 • 08:00 Invited

Visible Wavelength PICs for Fluorescent Microscopy and Flow Cytometry, Jeremy Witzens¹, Alireza Tabatabaei², Martin Büscher³, Thomas Klos⁴, Marc Spehr², Douwe Geuzebroek⁵, Florian Merget²; ¹Inst. of Integrated Photonics, Germany; ²RWTH Aachen Univ., Germany; ³Miltenyi Biotec, Germany; ⁴TOPTICA Photonics, Germany; ⁶LioniX International, Netherlands. Abstract not available.

08:00–10:00 W1C • Fiber Characterization and Fiber Sensing Presider: Lara Garrett; SubCom LLC, USA

W1C.1 • 08:00

Bending Radius Dependence of Power Coupling Coefficient and Spatial Mode Dispersion in Coupled Multi-Core Fibers, Masaki Nakamori¹, Atsushi Nakamura¹, Masaharu Ohashi², Yusuke Koshikiya¹; ¹NTT Corporation, Japan; ²Osaka Metropolitan Univ. College of Technology, Japan. We experimentally investigated the dependence of the power coupling coefficient (PCC) on the bending radius in coupled multi-core fibers for the first time. We also discuss the relationship between the PCC and spatial mode dispersion.

W1C.2 • 08:15

Characterization of Coupled Multi-Core Fiber Nonlinearity Using Modified CW-SPM Method, Taiji Sakamoto¹, Ryota Imada¹, Kazuhide Nakajima¹; 'NTT Access Service Systems Laboratories, Japan. Narrow bandwidth continuous-wave-based SPM method is proposed for measuring the effective nonlinear coefficient γ_{eff} of coupled multi-core fibers. We confirmed that the measured γ_{eff} with 2- or 4-core fibers agreed well with the theoretical model.

W1C.3 • 08:30

Distributed Polarization and Coupling Analysis of a 3-Coupled-Core Fiber, Martina Cappelletti', Daniele Orsuti', Riccardo Veronese², Nicolas K. Fontaine³, Roland Ryf³, Mikael Mazur³, Haoshuo Chen³, Marco Santagiustina', Andrea Galtarosa³, Luca Palmien'; 'Univ. of Padua, Italy; ²Prysmian Group, Italy; ³Nokia Bell Labs, USA. OPDR-based, distributed characterization of polarization and coupling properties of a 3-coupled-core fiber is reported. Results highlight the beating among the supermodes of the fiber, enabling the evaluation of their polarization and modal birefringence.

08:00–10:00 W1D • Panel: Advanced Packaging Technologies for Optical Modules

Organizers: Molly Piels, Juniper Networks, USA; Juthika Basak, Nokia, USA; Omer Khayam, Google, USA; Joris Van Campenhout, IMEC, Belgium

Speakers: David Gomez, X-Celeprint Inc., Ireland; Alexander Janta-Polczynski, IBM-Bromont, Canada; John Martinho, Ranovus, Canada; Edward Preisler, Tower Semiconductor, USA; Sandeep Razdan, Cisco, USA; Sebastian Skacel, Vanguard Automation, Germany; Hasham Taha, Teramount, Israel

Description: As the baud rate, channel density, power and cost efficiency continue to scale up in optical modules, more advanced packaging technologies are being introduced to optical modules. Such packaging technologies include electronic and photonic ICs integration schemes, laser packaging/integration techniques, optical fibers or other optical connections, etc. packaging schemes that are developed at wafer foundries, outsourced semiconductor assembly and test (OSAT) companies, and component and module suppliers. This panel aims to highlight various technologies and stimulate discussions on how advanced packaging can help/shape the future optical module development.

08:00–10:00 W1E • DSP Design and System Modeling Presider: Di Che; Nokia Bell Labs, USA

W1E.1 • 08:00 Invited

W1E.2 • 08:30

Parallel Extension of High-Speed Analog-

Circuit FIR Equalizer for Low-Latency

Optical Transceiver/Receiver, Shuhei

Otsuka¹, Rvo Koguchi¹, Takahide Saka-

moto¹: ¹Tokvo Metropolitan Univ., Japan.

We experimentally demonstrate parallel

extension of analog FIR equalizer. By a

dual parallel extended configuration, an

18-tap FIR filter with an 18-ps tap delay

is constructed, which adaptively equalizes

real-time 11.1-Gbaud NRZ signals.

DSP Design for Point-to-Multipoint Transmission, Thomas Duthel¹, Chris Fludger¹, Bo Liu¹, Antonio Napoli¹, Amir Rashidinejad², Stenio Ranzini¹, Sezer Erkilinc³, Aditva Kakkar², Atul Mathur⁴, Vince Dominic⁴, Parmijit Samra⁴, Han Sun², Azmina Somani², Dave Welch4: ¹Infinera GmbH, Germany: ²Infinera Canada Inc., Canada: ³Infinera AB. Sweden: ⁴Infinera Corporation, USA. Coherent optical transmission systems using digital sub-carriers are ideal for point-to-multi-point applications. Many functional blocks are similar to the ones of single-channel processors. But, several aspects, specific to digital sub-carriers and point-to-multi-point, need consideration in the DSP implementation. lable.

08:00–10:00 W1F • 5G and Beyond Presider: Daniel Kilper; Univ. of Dublin Trinity College, USA

W1F.1 • 08:00 Tutorial

Optical Satellite Networks, Vincent W. Chan¹; ¹Massachusetts Inst. of Technology, USA. Abstract not available.

W1A.2 • 08:30 Top-Scored Demonstration of an Ultra-High-Responsivity All-Silicon Avalanche Photodetectors, Yiwei Peng', Yuan Yuan', Wayne Sorin', Stanley Cheung', Zhihong Huang', Marco Fiorentino', Raymond Beausoleil'; 'Hewlett Packard Enterprise, USA. We demonstrate an all-Si 20 Gb/s microring avalanche photodiodes with a responsivity of more than 65 A/W. This is the first all-Si APD that can compete with current commercial Ge and Ill-V photodetectors.

W1B.2 • 08:20 Invited

Underwater Visible Light Communication, Boon S. Ooi'; 'King Abdullah Univ of Sci & Technology, Saudi Arabia. Recent development and advances in underwater wireless optical communication (UWOC) will be presented. We will focus our discussion on device and system challenges facing multiple-Gbit/s laser-based UWOC, and its future perspective.

Room 7AB

Room 8

07:30-08:00 Coffee Break, Upper Level Corridors

07:00–08:30 International Women's Day Breakfast, Upper Level, Ballroom 20A

08:00-10:00 W1G • Optical Networks for Machine Learning Systems Presider: To be announced.

08:00-10:00 W1H • Optical Performance Monitoring Presider: Ezra Ip; NEC Laboratories America Inc., USA

W1H.1 • 08:00 Tutorial

08:00-10:00 W11 • Flexible Coherent PON Presider: Dora van Veen: Nokia Corporation, USA

08:00-10:00 W1J • Fiber Sensing Presider: Mikael Mazur, Nokia Bell Labs, USA

W1G.1 • 08:00 Top-Scored SiP Architecture for Accelerating Collective Communication in Distributed Deep Learning, Zhenguo Wu¹, Liang Yuan Dai¹, Ziyi Zhu¹, Asher S. Novick¹, Madeleine Glick¹, Keren Bergman¹; ¹Columbia Univ. USA. We present a silicon photonic architecture for accelerating collective communications in distributed deep learning. We demonstrate a 22% job completion time improvement in a small-scale testbed and 1.4 to 5.9x improvement in large-scale simulations.

Cables, Valey Kamalov1; 1Google LLC, USA. We will review basic physics to establish five methods to use subsea optical fiber networks for network resiliency improvements, earthquake and tsunami early warning, and climate change: i) Optical interferometry-based, ii) Optical polarization-based, iii) Coherent Rayleigh backscattering; iv) Microwave frequency fiber interferometry, v) Faraday's law of induction to explain correlation of voltage disturbance and the strength of the geomagnetic perturbation

Methods for Geophysical Sensing on Submarine

W1I.1 • 08:00 Invited

Reusing Data Center Optics and Solutions for Beyond 25Gb/S PON: Is the Gap Really Bridged?, Vincent Houtsma¹, Dora van Veen¹: ¹Nokia Bell Labs, USA. In this paper we will review the benefits as well as challenges to overcome in adoption of data center technologies for next-generation TDM-PONs.

W1J.1 • 08:00 Invited

Geophysical Studies Using DAS, Nate Lindsey1; ¹Fiber Sense Pty Ltd, USA. ϕ -OTDR/DAS enables dense, long-range (1 - 200 km), array recordings of strain fields with exceptional sensitivity (< 1×10-9 strain) wherever optical fiber exists. The measurement is conventionally based on interferometrically extracting dynamic phase information of the Rayleigh backscattered light from one end of a single-mode fiber. Recently, *q*-OTDR/DAS has expanded into telecommunications networking, seismology and geophysics, water infrastructure monitoring, and civil engineering.

W1G.2 • 08:15

MAESTRO: MAke-BEfore-Break StraTegy for Reconfiguration in Optical Datacenters, Sandeep Kumar Singh¹, Che-Yu Liu¹, Roberto Proietti², S. J. Ben Yoo¹; ¹Univ. of California Davis, USA; ²Politenico de Torino, Italy. We present a MAke-bEfore-break StraTegy for Reconfiguration in Optical datacenters (MAESTRO). The simulation results show a reduction in packet loss by up to 98% compared to a baseline reconfiguration method.

W1G.3 • 08:30

On the Performance of a Fast Optically Switched Network for Machine-Learning Accelerator Clusters, Marijn Rombouts¹, Nicola Calabretta¹; ¹Eindhoven Univ. of Technology, Netherlands. We investigate the viability of optically switched network for ML accelerator clusters and compare it to a leafspine network with 256/1024 GPUs. Results show almost ideal throughput, sub-us latency and zero packet-loss for <0.6 traffic-load.

W1I.2 • 08:30 Top-Scored Rate-Flexible Coherent PON Up to 300 Gb/s

Demonstrations With Low Complexity TDM Burst Design, Haipeng Zhang¹, Zhensheng Jia¹, Luis A. Campos², Curtis Knittle¹; ¹R&D, CableLabs, USA; ²Next-Gen Systems, CableLabs, USA. Two flexible-rate coherent PON architectures have been demonstrated, featuring a low complexity TDM burst DSP. A peak data rate of up to 300-Gb/s and transmission over 50-km link and 1×32 split ratio has been achieved.

W1.J.2 • 08:30

Observation of Local Small Magnitude Earthquakes Using State of Polarization Monitoring in a 250km Passive Arctic Submarine Communication Cable, Kristina Shizuka Yamase Skarvang¹, Steinar Biørnstad², Robin André Rørstadbotnen¹, Kurosh Bozorgebrahimi³, Dag Roar Hjelme¹; ¹NTNU, Norway; ²Tampnet, Norway; ³SIKT, Norway. We demonstrate local smallmagnitude earthquake observation using State of Polarization sensing on an alien wavelength in a live single-span passive submarine cable communication system. Distributed Acoustic Sensing verifies seismic waves propagating along the cable.

Room	1AB
------	-----

Room 2

W1B • Special Session:

Wavelengths I—Continued

Indoor Visible Light Communication (LiFi),

Harald Haas¹; ¹Univ. of Strathclyde, UK.

Photonics for Visible

W1B.3 • 08:40 Invited

Abstract not available.

Room 3

W1E • DSP Design and

System Modeling-

Room 6E

W1F • 5G and Beyond— Continued

W1A • Advanced Photodetectors—Continued

W1A.3 • 08:45

80-GHz Bandwidth and High Responsivity of InP Coherent Receiver PIC With Butt-Joint Waveguide PDs, Takuya Okimoto^{2,1}, Hideki Yaqi^{2,1}, Ken Ashizawa³, Kouichiro Yamazaki³, Koji Ebihara³, Satoru Okamoto³, Kazuhiko Horino³, Munetaka Kurokawa^{2,1} Yoshiyuki Sugimoto¹, Seiji Kumagai¹, Keiji Tanaka¹, Masaru Takechi^{2,1}, Mitsuru Ekawa^{2,1}, Yoshihiro Yoneda^{1,3}: ¹Sumitomo Electric Industries, Ltd., Japan; ²Photonics Electronics Technology Research Association, Japan; ³Sumitomo Electric Device Innovations, Inc., Japan, An InP-based coherent receiver PIC with waveguide PDs demonstrates 80-GHz bandwidth and high responsivity of 0.156 A/W at a wavelength of 1.55 µm. A coherent receiver module with PICs and a TIA performs sufficient characteristics for 128-GBaud transmission.

W1A.4 • 09:00 190 GHz Bandwidth Modified Uni-

acteristics for

W1B.4 • 09:00 Invited

Micro-LEDs and Quantum Based-Full Color Devices for Display and Visible Light Communications, Hao-Chung Kuo', Wei-Ta Huang', Konthoujam James Singh', Chi-Wai Chowi, Gong-Ru Lin', Gary Chen'; 'National Yang Ming Chiao Tung Univ, Taiwan. Redgreen-blue (RGB) full-color micro lightemitting diodes (µ-LEDs) fabricated from semipolar (20-21) wafers, with a quantumdot photoresist color-conversion layer, were demonstrated. We also demonstrated high-stability quantum dot-converted 3-in-1 full-color mini-light-emitting diodes passivated with low-temperature atomic layer deposition. W1C • Fiber Characterization and Fiber Sensing—Continued

W1C.4 • 08:45 Distributed Characterization of Low-Loss Hollow Core Fibers Using EDFA-Assisted Low-Cost OTDR Instrument, Xuhao Wei¹, Bo Shi¹, David J. Richardson¹, Francesco Poletti¹, Radan Slavik¹; ¹Univ. of Southampton, UK. We use a lowcost commercially-available Optical Time Domain Reflectometer (OTDR). Sensitivity is boosted by 28 dB using two EDFAs, enabling characterization with spatial resolution of 1.5 m, which is 10 times better than previously reported.

W1C.5 • 09:00 Tutorial

Optical Sensing With Specialty Fibers, Joel Villatoro^{1,2}; 'Univ. of the Basque Country UPV/EHU, Spain; 2/KERBASQUE, Spain. Specialty fibers allow the development of new platforms that considerably widen the optical fiber sensing field. In this tutorial, recent cutting-edge applications of such fibers to monitor physical, gas, and (bio) chemical parameters will be discussed.

W1D • Panel: Advanced Packaging Technologies for Optical Modules—Continued

Continued W1E.3 • 08:45 Simultaneous Frequency-Dependent Impairments Calibration for 96GBaud Coherent Optical Transceiver, Longquan Dai¹, Shuchang Yao², Ziheng Zhang¹, Jing Dai², Ming Luo³, Xi Xiao^{3,4}, Yaqin Wang², Qi Yang¹, Ming Tang¹, Deming Liu¹, Lei Deng¹;

Dai¹, Shuchang Yao², Ziheng Zhang¹, Jing Dai², Ming Luo³, Xi Xiao^{3,4}, Yagin Wang², Qi Yang¹, Ming Tang¹, Deming Liu¹, Lei Deng¹; ¹Huazhong Univ of Science and Technology, China; ²Fiberhome Telecommunication Technologies Co., LTD,, China; ³China Information and Communication Technologies Group Corporation (CICT), China; ⁴National Information Optoelectronics Innovation Center, China. We report a calibration method to simultaneously characterize all the frequency-dependent impairments of coherent optical transceivers. With calibration operation, dual-polarization 96GBaud Nyguist-16QAM signal transmission is achieved by using a silicon photonics-based 64GBaud-class coherent optical transceiver.

W1E.4 • 09:00

Calibration of High-Speed Time-Interleaving DAC, Ke Zhang¹, Xiaofei Su¹, Hisao Nakashima², Takeshi Hoshida², Zhenning Tao¹, ¹Fujitsu R&D, China;²Fujitsu Limited, Japan. Distortion in high-speed time-interleaving DAC caused by the mismatch among subDACs is experimentally calibrated by the enhanced error backpropagation scheme. Undesired spur is reduced by 20 dB, and the ENOB is improved by 0.72 bit.

W1F.2 • 09:00

Access Point Selection Based on Regular Coding in Walker-Delta Optical Satellite Networks, Yuanjian Zhang', Wei Wang', Yongli Zhao', Hua Wang', Yinji Jing', Jie Zhang'; 'Beijing Univ. of Post and telecommu, China. In this paper, a mobile-side access satellite selection algorithm based on regular coding is proposed. Simulation results show it can effectively reduce the connection latency and blocking ratio in walker-delta satellite optical networks.

Room 6F	Room 7AB	Room 8	Room 9
W1G • Optical Networks for Machine Learning Systems— Continued	W1H • Optical Performance Monitoring—Continued	W1I • Flexible Coherent PON— Continued	W1J • Fiber Sensing—Continued
W1G.4 • 08:45 A Vectorised Packing Algorithm for Efficient Generation of Custom Traffic Matrices, Christo- pher W. Parsonson', Joshua Benjamin', Georgios S. Zervas'; 'Univ. College London, UK. We propose a new algorithm for generating custom network traffic matrices which achieves 13x, 38x, and 70x faster generation times than prior work on networks with 64, 256, and 1024 nodes respectively.		W11.3 • 08:45 Top-Scored Pilot-Aided Continuous Digital Signal Processing for Multi-Format Flexible Coherent TDM-PON in Downstream, Guoqiang Li', An Yan', Sizhe Xing', Zhongya Li', Wangwei Shen', Jiaye Wang', Junwen Zhang', Nan Chi', 'Fudan Univ., China. To avoid burst-signal processing in downstream transmission during modulation-format switching, we propose and experimentally demonstrate a pilot-aided DSP scheme with continuous SOP tracking, carrier-phase	W1J.3 • 08:45 Optical Fiber Artificial Neuromast for Versatil Underwater Safe Navigation, Liangye Li ¹ , Xuha Fan ¹ , Shunfeng Sheng ¹ , Yunfei Liu ¹ , Wangyang Xu Wei Xiong ¹ , Oizhen Sun ¹ ; 'Huazhong Univ of Sc ence and Technology, China. We present an optica fiber artificial neuromast inspired by fish lateral line for versatile underwater safe navigation, exhibitin an ultra-high flow sensitivity of 62.02 nm s/mL (0 0.05mL/s) and a resolution of 0.32 µL/s.

W1G.5 • 09:00 Tutorial

Optical Switching Will Innovate Intra Data Center Networks, Ken-ichi Sato^{1,2}; ¹National Inst. of AIST, Japan; ²Information and Communication Engineerint, Nagoya Univ., Japan. This tutorial will discuss how optical switching technologies can innovate future data center networks. The two core technologies, large-port-count optical switches that have pay-asyou-grow scalability, and simple and fast optical switch network control are reviewed.

W1H.2 • 09:00

On the Spatial Resolution of Location-Resolved Performance Monitoring by Correlation Method, Choloong Hahn¹, Zhiping Jiang¹; 'Huawei Technologies Canada, Canada. We show that the spatial resolution of correlation method for location-resolved performance monitoring is as good as the MMSE by applying deconvolution. Also, we propose a digital block filtering method to improve the spatial resolution under given signal and link condition.

W1I.4 • 09:00

Low-Cost 100G Coherent PON Enabled by TFDM Digital Subchannels and Optical Injection Locking, Haipeng Zhang¹, Zhensheng Jia¹, Luis A. Campos², Curtis Knittle¹, ¹R&D, CableLabs, USA; ²Next-Gen Systems, CableLabs, USA. We demonstrate a novel 100G TFDM coherent PON architecture featuring low-cost ECL-free ONU enabled by remote optical carrier delivery through injection locking. System performance shows no degradation compared to a regular ECL based system.

recovery, and channel estimation in the 300G flexible

CPON based on 4/16/64-QAMs.

W1J.4 • 09:00

Simultaneous Communications and Vibration Sensing Over a Single 100-km Deployed Fiber Link by Fiber Interferometry, Yaxi Yan^{1,2}, Liwang Lu³, Xiong Wu³, Jingchuan Wang³, Yan He¹, Daru Chen², Chao Lu³, Alan Pak Tao Lau¹; ¹Department of Electrical Engineering, The Hong Kong Polytechnic Univ., Hong Kong; ²Plangzhou Inst. of Advanced Studies, Zhejiang Normal Univ., China; ³Department of Electronic and Information Engineering, The Hong Kong Polytechnic Univ., Hong Kong. We demonstrate simultaneous 60 GBaud 16-QAM transmissions and vibration sensing over a single 100-km deployed fiber link. Vibration Iocalization is realized by extracting the phases of a co-propagating pilot and a counter-propagating tone.

Room 1AB	Room 2	Room 3	Room 6C	Room 6D	Room 6E
W1A • Advanced Photodetectors—Continued	W1B • Special Session: Photonics for Visible Wavelengths I—Continued	W1C • Fiber Characterization and Fiber Sensing—Continued	W1D • Panel: Advanced Packaging Technologies for Optical Modules—Continued	W1E • DSP Design and System Modeling— Continued	W1F • 5G and Beyond— Continued
W1A.5 • 09:15 A 4 × 100 Gbps DWDM Receiver Using All-Si Microring Avalanche Photodiodes, Yuan Yuan', Yiwei Peng', Zhihong Huang', Jared Hulme', Stanley Cheung', Wayne Sorin', Di Liang', Marco Fiorentino', Ray- mond Beausoleil', ' <i>Hewlett Packard Labs,</i> <i>Hewlett Packard Enterprise, USA.</i> We demonstrate an O-band 4-channel DWDM receiver using all-Si microring APDs. Each all-Si APD exhibits a low dark current at nA level before the breakdown, a responsivity of ~ 0.5 A/W, and a 3-dB bandwidth of ~ 44 GHz. All 4 channels are capable of open eye diagrams at 50 Gbps NRZ and 100 Gbps PAM4 operations.	W1B.5 • 09:20 Invited Visible Light Photonics for SBS and Quantum Sensing, William Loh', John Chiaverini', Dave Kharas', Thomas Mahony', Ryan Maxson', Robert McConnell', Alex Me- deiros', Rachel Morgan', Cheryl M. Sorace- Agaskar', Alkesh Sumant', Reuel Swint', Gavin West ² ; 'MIT Lincoln Laboratory, USA; 'MIT, USA. Integrated photonics at visible wavelengths offer exciting possibilities for miniaturizing and scaling the capabilities of quantum sensors. Here we discuss the techniques and challenges with bringing visible wavelengths to a chip platform.			W1E.5 • 09:15 Distortion Analysis and Equivalent Mul- tiplicative and Additive Noise Model for High-Speed DAC and ADC, Xiaofei Su ¹ , Tong Ye ¹ , Ke Zhang ¹ , Chengwu Yang ¹ , Hisao Nakashima ² , Takeshi Hoshida ² , Zhenning Tao ¹ ; 'Fujitsu R&D Center, China; ² Fujitsu Limited, Japan. By analyzing the distortions of time-interleaving convertors, equivalent model with both multiplicative and additive noises is proposed and constructed by tone-based measurements. Experiments show that the proposed model estimates system performance with 0.2 dB accuracy.	W1F.3 • 09:15 Invited Human-Centric Networking and the F to 6G, Dimitra E. Simeonidou'; 'Uni Bristol, UK. Abstract not available.
W1A.6 • 09:30 Low Dark Current Backside-Illuminated Photodiode for 200 Gb/s Operation With 40 µm Wide Alignment Tolerance, Ryota Takemura', Daiki Tsubouchi', Akihito Ohno', Yasuhiro Yamauchi', ' <i>Mitsubishi Electric Corporation, Japan</i> . A backside-illuminated ohotodiode employing a semiconductor- ouried structure is demonstrated at 200 Gb/s. The photodiode exhibited a 3dB bandwidth of 65 GHz, an effective aperture of 40 µm, and a dark current of 1 pA.				W1E.6 • 09:30 Experimental Probing and Modeling of the PDL Impact on the Optical Signal-to- Noise Ratio, Andrea D Amico ¹ , Giacomo Borraccini ¹ , Stefano Straullu ² , Francesco Aquilino ² , Stefano Piciaccia ³ , Alberto Tanzi ³ , Gabriele Galimberti ¹ , Vittorio Curri ¹ ; ¹ Po- litecnico di Torino, Italy; ² Links Foundation, Italy; ³ Cisco Photonics, Italy. The PDL impact on the OSNR is systematically probed on an experimental setup using coherent optical technology for the first time. Extending the observation through a Monte Carlo analysis, the PDL-induced OSNR penalty is modeled.	
W1A.7 • 09:45 In _{0.52} Al _{0.48} as Based Single Photon Ava- anche Diodes With Multiple M-Layers for High-Efficiency and Fast Temporal	10:00–17:00 Exhibition	n and Show Floor, Exhibit Hall, (c	coffee service 10:00–10:30)	W1E.7 • 09:45 Preemphasis-Aware Semiconductor Optical Amplifier Model, Hartmut Ha- fermann ¹ , Xiaohui Zhao ¹ , Shuqi Yu ¹ , Yann	W1F.4 • 09:45 Field Trial of End-to-end Manage and Control of Semi-Active WDM Sy for 5G Centralized Front-Haul Netv
Responses, Po-Shun Wang ¹ , Yu-Ying Hung ¹ , Tzu-Yuan Fang ¹ , Chin-He Kuo ¹ , Yuan-Hung Huang ¹ , Yan-Chieh Chang ¹ ,		-16:30 OFC Career Zone, Exh		Frignac ¹ ; ¹ Huawei Technologies, France. A preemphasis-aware model for SOAs with non-flat WDM inputs yielding a root-	Yang Zhao ¹ , Jiang Sun ¹ , Haomian Zh Chaode Yu ² , Dong Wang ¹ , Qian Cai ¹ , Y Li ¹ , Liuyan Han ¹ , Dechao Zhang ¹ , Ha

Yi-Shan Lee^{1,2}, Jin-Wei Shi¹; ¹National Central Univ., Taiwan; ²Graduate Institite of Optoelectronics, National Tsing Hua Univ., Taiwan. Multiple multiplicationlayers SPADs with excellent performances in terms of high-efficiency (>74%), neat impulse response time (101ps), and short hold-off time (83ns@<1% afterpulsing) can be achieved simultaneously with a simple passive quenching circuit under gatedmode operations.

OFC Career Zone Job Fair | Resume Critique | Mock Interviews

10:30–12:00 The Art of Writing the Perfect OFC Paper, Room 14B

10:30–12:30 W2A • Posters Session I, In-Person, Exhibit Hall B1 W2B • Posters Session II, Remote, ePoster Gallery on OFC website Lunch Break (on own; concessions available in Exhibit Hall)

mean-square error of less than 0.05 dB is presented. It outperforms generic neuralnetwork models while using a fraction of the training data.

¹China Mobile Research Inst., China; ²Huawei Technologies Co., Ltd., China. A novel management and control architecture and abstract model of semi-active WDM system for 5G front-haul network are proposed. The functions of device information acquisition, alarm monitoring and fault location is demonstrated in field trial. © 2023 The Author(s)

W1J • Fiber Sensing—Continued

W1G • Optical Networks for Machine Learning Systems— Continued

W1H • Optical Performance Monitoring—Continued

W1I • Flexible Coherent PON— Continued

W1H.3 • 09:15

Locating Fiber Loss Anomalies With a Receiver-Side Monitoring Algorithm Exploiting Cross-Phase Modulation, Paolo Serena¹, Chiara Lasagni², Alberto Bononi¹, Fabien Boitier², Alix May³, Petros Ramantanis³, Matteo Lonardi²⁴, ¹Universita degli Studi di Parma, Italy; ²Università dell'Aquila, Italy; ³Nokia Bell Labs, France; ⁴Nokia, Italy. We propose and experimentally test a cross-phase modulation based algorithm to monitor network loss anomalies from detected data. The idea does not need service interruption, special signals, nor an exhaustive search of the anomaly coordinate.

W1I.5 • 09:15

Demonstration of Beyond 100G Three-Dimensional Flexible Coherent PON in Downstream With Time, Frequency and Power Resource Allocation Capability, Wangwei Shen', Sizhe Xing', Guoqiang Li', Zhongya Li', An Yan', Jiaye Wang', Junwen Zhang', Nan Chi', '*Irudan Univ, China.* We propose and demonstrate a novel three-dimensional flexible coherent PON with the resource-allocation capability in time, frequency and power domain. High flexibility is demonstrated with >100G over 20-km fiber for coherent PON in downstream.

W1J.5 • 09:15

Field Trial of High-Resolution Distributed Fiber Sensing Over Multicore Fiber in Metropolitan Area With Construction Work Detection Using Advanced MIMO-DAS, Sterenn Guerrier¹, Antonio Mecozzi3, Christian Dorize1, Cristian Antonelli3, Lauren Dallachiesa⁴, Haik Mardovan¹, Elie Awwad⁵, Daniele Orsuti⁶, Luca Palmieri⁶, Mikael Mazur⁴, Tetsuva Hayashi², Roland Ryf⁴, Jérémie Renaudier¹; ¹Nokia Bell Labs, France; ²Sumitomo Electric Industries, Ltd., Japan: ³Universita degli Studi dell'Aguila, Italy: ⁴Nokia Bell Labs, Nokia Bell Labs, Murray Hill, NJ, US, USA; ⁵Télécom Paris Département Communications et Électronique, Telecom Paris Departement Communications et Electronique, Paris, Île-de-France, FR, academic/tech, France; ⁶Universita degli Studi di Padova, Universita degli Studi di Padova, Padova, Veneto, IT, academic, Italy. We demonstrate a successful field trial of MIMO-DAS over multicore fiber (MCF) allowing for accurate localization of acoustic events in the city of L'Aquila, Italy. We show a 2m spatial resolution and 1mHz-380Hz acoustic bandwidth

W1H.4 • 09:30

0.77-dB Anomaly Loss Localization Based on DSP-Based Fiber-Longitudinal Power Estimation Using Linear Least Squares, Takeo Sasai', Masanori Nakamura', Etushi Yamazaki', Hideki Nshizawa', Yoshiaki Kisaka'; 'NTT Corporation, Japan. We experimentally demonstrate that DSP-based fiber-longitudinal power estimation achieves good agreement with OTDR with a root-mean-square error of 0.18 dB and thus localizes a 0.77-dB anomaly loss, which may occur as a connector loss.

W1H.5 • 09:45

optimal performance.

Distributed Span Degradation Self-Aware Detection and Compensation for C+L-Band Transmission Systems, Shengnan Li¹, Chen Zhu¹, Shuo Wang¹, Feng Gao¹, Yongxin Cui¹, Gang Cheng¹, Xu Zhou¹, ¹Beijing Baidu Netcom Science Technology, China. We propose a distributed approach that enables OLAs to instantaneously self-aware its preceding span's degradation and apoly the gain/tilt adjustments, this

ultra-fast method is experimentally demonstrated in both C96+L96 and C120+L100 systems with near-

W11.6 • 09:30 Invited

High-Performance and Robust Burst Reception in Coherent PON, Junwen Zhang¹; ¹Fudan Univ., China. Abstract not available.

W1J.6 • 09:30

Full Link SNR Equalization DAS System Over 80km Based on Gradient Discrete Scattering Enhanced Fiber, Cunzheng Fan', Xiangpeng Xiao', Hao Li', Weiliang Zhao', Zhijun Yan', Qizhen Sun'; 'Huazhong Univ of Science and Technology, China. We proposed a full-link SNR-equalization DAS based on gradient discrete scattering enhanced fiber with backscattering rates increase gradually according to optical loss. The experimental results show a 15pt/√Hz strain resolutino over 80km

W1J.7 • 09:45

Polarization Sensing Using Polarization Rotation Matrix Eigenvalue Method, Fath Yaman¹, Yang Li¹², Shaobo Han¹, Takanori Inoue³, Eduardo F. Mateo³, Yoshihisa Inada³; ¹NEC Laboratories America Inc., USA; ²Computer Science, Georgia State Univ., USA; ³Submarine Network Division, NEC Corporation, Japan. Polarization-based, multi-span sensing over a link with reflection-back circuits is demonstrated experimentally. By measuring rotation matrices instead of just monitoring polarization, a 35 dB extinction in localization is achieved regardless of the disturbance magnitude.

10:30-12:30 W2A • Posters Session I (In-Person)

W2A.10

Bundle-Type fan-in/fan-out Device for 4-Core Multi-Core Fiber With High Return Loss, Kohei Ozaki¹ Yoshifumi Koike¹, Akito Nishimura¹; ¹Fujikura Ltd., Japan. We have developed a bundle-type fan-in/ fan-out device that can achieve a high return loss by using a multi-core fiber/single-core fiber conversion component comprising a high-precision molded plastic ferrule.

W2A.11

Quasi-Constant Signal Power Transmission With Low Signal RIN by DRA With Incoherent-Forward and Coherent-Backward Pumps, Shigehiro Takasaka¹, Norihiro Ohishi¹, Satoru Ichihara¹, Nitidet Thudsalingkarnsakul², Naoya Hoio³, Yasuto Tatamida¹, Junii Yoshida¹, Sanguan Anantathanasarn², Toshio Kimura¹; ¹Furukawa Electric, Japan: ²Furukawa FITEL (Thailand), Japan: ³Furukawa FITEL Optical Device, Japan, We measure characteristics of a transmitted WDM signal in an 80 km-long SMF under bi-directionally pumped DRA with incoherent-forward and coherent-backward pumps. The signal shows OSNR of 50.0 dB and RIN less than -140 dB/Hz.

W2A.12

4-Core Fiber Narrow Pitch Fanout Comprised of Tapered High-Δ MCF, Masanori Takahashi¹, Tsubasa Sasaki1, Ryuichi Sugizaki1, Yoshihiro Arashitani1; 1Furukawa Electric, Japan, Narrow pitch all fiber base fanout comprised of fiber bundle fanout and high- Δ 4-core fiber is developed. Core pitch and insertion loss of the fanout are reduced to 19.4 um and 0.6 dB, respectively.

W2A.13

First Field Trial of FTTR Based on Native Management and Control Architecture for 5G Small Cell Backhaul, Jinglong Zhu¹, Junwei Li¹, Nannan Zhang¹, Ning Wang¹, Dechao Zhang¹, Han Li¹, Xiaodong Duan¹, Xuming Wu², Lirong Bai³: ¹Department of Fundamental Network Technology, China Mobile Research Inst., China; ²Optical Research Dept, Huawei Technologies Co., Ltd., China: ³China Mobile Communications Corporation Group Co., Ltd., China. We firstly propose a native management and control architecture of FTTR, based on which a field trial for 5G small cell backhaul is demonstrated. The download speed of each user equipment reaches nearly 800 Mbps

W2A.14

Supporting Bandwidth Guarantee for a Fast Optical Switching Network With Micro Buffer Switching Fabric, Fulong Yan¹, Chongiin Xie¹, Nicola Calabretta²; ¹Alibaba Cloud, China; ²TU/e, Netherlands. We propose a micro buffer fast optical switch (MFOS) fabric for a data center network. MFOS highly improves the network performance and achieves 6.7 us latency and 99.9% throughput at a load of 0.8.

W2A.15

Speedy and Cost-Efficient Optical Network Modernization Through Quantum-Inspired Computing,

Masahiko Sugimura⁴, Mohammad Javad-Kalbasi¹, Hidetoshi Matsumura², Xi Wang³, Paparao Palacharla³, Shahrokh Valaee1: 1The Univ. of Toronto, Canada: ²Fuiitsu Consulting (Canada) Inc., Canada: ³Fuiitsu Network Communications Inc., USA: ⁴Fuiltsu Limited, Japan. We present a migration plan optimization solution to accelerate the removal of legacy devices and minimize travel costs in network modernization utilizing Fujitsu Digital Annealer. Our method found more cost-efficient plans by up to 70%.

W2A.16

Optimal Design of Filterless Horseshoe Networks Supporting Point-to-Multipoint Transceivers,

Mohammad Mohammad Hosseini¹, João Pedro^{2,4}. Nelson Costa², Antonio Napoli³, Jaroslaw E. Prilepsky¹, Sergei K. Turitsyn¹: ¹Aston Univ., UK: ²Infinera, Portugal: ³Infinera, Germany: ⁴Instituto de Telecomunicações, Portugal. This paper proposes an ILP framework to optimize metro-aggregation filterless horseshoe networks for digital subcarrier multiplexing point-to-multipoint (P2MP) transceiver deployment. The results show that this significantly reduces amplifier requirements while ensuring endto-end performance.

W2A.17

Soft-Failure Identification and Localization Method Based on Received Optical Signal Quality and Repeater Nodes' Performance, Hiroshi Yamamoto¹, Kouhei Watanabe¹, Hiroki Date¹, Daisaku Shimazaki¹, Yutaka Fukuchi², Hideki Maeda²; ¹NTT Corporation, Japan; ²Tokyo Univ. of Science, Japan. We propose novel methodology to identify and localize soft-failures using performance metrics monitored at repeater nodes in addition to signal quality

monitored at transponders and show feasibility in experiments using commercial equipment and fielddeployed fibers.

W2A.18

Degradation Detection and Severity Estimation by Exploiting an Optical Time and Frequency Digital Twin, Mariano Devigili¹, Marc Ruiz¹, Sima Barzegar¹, Nelson Costa², Antonio Napoli³, João Pedro^{2,4}, Luis Velasco¹; ¹Universitat Politecnica de Catalunya, Spain; ²Infinera Unipessoal Lda., Portugal;

³Infinera, Germany; ⁴Instituto de Telecomunicações, IST. Portugal. We exploit the intrinsic advantages of a time and frequency domain digital twin to detect degradations and to estimate their severity. Noticeable performance shown for filter failures confirms the usefulness of this approach.

W2A.19

Towards an Analytical Tool to Support Planning of 400ZR+-Enabled IPoWDM Networks, Nicolás A. Jara¹, Gerardo Rubino², Hermann Pempelfort¹, Patricia Morales¹, Alejandra L. Beghelli³; ¹Department of Electronics Engineering, Universidad Tecnica Federico Santa Maria, Chile: ²INRIA Rennes - Bretagne Atlantique, INRIA, France; ³Optical Network Group (ONG), Electronic and Electric Engineering Department, Univ. College London, UK. A highly accurate analytical procedure to support emerging ZR+-enabled IPoWDM network planning tools is presented. The procedure is four orders of magnitude faster than simulation, allowing extensive and fast network analysis and design.

W2A.20

Demonstration of Real-Time 4×125.516 Gbit/s MMW-Over-Fiber Passive Optical Network Transmission at W-Band Based on Optical Wavelength Routing Scheme, Bingchang Hua¹, Min Zhu^{1,2}, Jiao Zhang^{1,2}, Mingzheng Lei¹, Yuancheng Cai^{1,2}, Yucong Zou¹, Liang Tian¹, Jian Chen², Weidong Tong², Xiang Liu², Guo Zhao³, Jianiun Yu⁴: ¹Purple Mountain Laboratories, China; ²Southeast Univ., China; ³Nanjing Wasin Fujikura Optical Communication Ltd, China; ⁴Fudan Univ., China. We proposed and experimentally demonstrate the first real-time transparent pointto-multipoint photonics-assisted MMW-over-fiber passive optical network transmission scheme with a record line rate of 4×125.516 Gbit/s at W-band based on optical wavelength routing scheme.

W2A.21

On the Rate Monitoring Performance of Active Learning-Based Classifier for PCS-Based Rate-Flexible TWDM-CPON, Zixian Wei¹, Jinsong Zhang¹, Weijia Li¹, David Plant¹: ¹McGill Univ., Canada. We firstly demonstrated active learning (AL)-based classifier for monitoring the entropy/ rate of the PCS-based rate-flexible TWDM-CPON For an 80-km 350-Gb/s/λ~450-Gb/s/λ downstream. the AL-based scheme achieves 100%/95% entropy/ rate identification accuracies corresponding to 25/5 Gbps tuning steps.

W2A.22

600-Gbit/s/λ Mode-Multiplexed Bit-Loading DMT Signal Transmission for Short-Reach Optical Interconnect, Xinkuo Yu1,2, Jianping Li1,2, Yuwen Qin1,2, Ou Xu^{1,2}, Meng Xiang^{1,2}, Songnian Fu^{1,2}; ¹Inst. of Advanced Photonics Technology, School of Information Engineering, Guangdong Univ. of Technology, China; ²Guangdong Provincial Key Laboratory of Information Photonics Technology, Guanadona Univ. of Technology, China, Single wavelength 600-Gbit/s bit-loading MDM-DMT signal transmission over 20m OM2 fiber with BER below SD-FEC threshold (2.7×10-2) is demonstrated without MIMO-DSP for mode demultiplexing. This report shows the potential for future large-capacity short-reach optical interconnects.

W2A.1

W2A.2

W2A.3

W2A.4

An Apparatus for Fast Inspecting and Cleaning

MPO Connector, Yu Huang¹, Jose Castro¹, Thomas

Sedor¹, Rick Pimpinella¹, Bulent Kose¹, Brett Lane¹;

¹Panduit, USA. In this paper, we present an apparatus

that can inspect and clean the end face of the fiber-

optic connector without the need to switch the

A 200Gb/s Low Power DSP-Based Optical Receiver

and Transmitter With Integrated TIA and Laser

Drivers, Arik Zafrany¹, Daniel Burgos¹, Li Cai¹, Sau

Siong Chong¹, Colin Cramm¹, Sadegh Dadash¹,

Vishal Giridharan¹, Vivek Gurumoorthy¹, Belal He-

lal¹, Cheng-Ru Ho¹, Amrutha Iyer¹, Steve Jantzi¹,

Chang-Feng Loi¹, The Linh Nguyen¹, Kevin Parker¹,

Ed Pillai¹, Karthik Raviprakash¹, Sagar Ray¹, Paolo

Rossi¹, Zhuochao Sun¹, Amber Tan¹, Lawrence Tse¹,

Brian Wall¹, Luke Wang¹, Jeffrey Wang¹, Tzu-Fan Wu¹;

¹Marvell Semiconductors, USA, Fully integrated low

power 200Gb/s DSP based optical transmitter and

receiver ICs with transmitter chip incorporating fully

integrated laser drivers and receiver chip with fully

integrated Transimpedance amplifier (TIA) in 16nm

Error-Tolerant Integrated Optical Unitary Pro-

cessor Based on Multi-Plane Light Conversion,

Rvota Tanomura¹, Rui Tang¹, Takuo Tanemura¹,

Yoshiaki Nakano¹; ¹The Univ. of Tokyo, Japan. We

experimentally demonstrate error-tolerant optical

unitary processors with multiport directional couplers.

Thanks to the inherent redundancy of the multi-plane

light conversion scheme, equivalent performance is

obtained in the presence of large fabrication errors.

Silicon Photonic Tunable Flat-top Filters Based on

CROW Structures at 2-mm Spectral Range, You Wu1,

Xi Wang¹, Xiaoyuan Guo¹, Jiangbing Du², Qinghai

Song³, Ke Xu¹; ¹Department of Electronic and Informa-

tion Engineering, Harbin Inst. of Technology, Shen-

zhen, China: ²State Key Laboratory of Advanced Opti-

cal Communication Systems and Networks, Shanghai

Jiao Tong Univ., China; ³Department of Science,

Harbin Inst. of Technology, Shenzhen, China. Silicon

photonic tunable flat-top filters are demonstrated via

the 5th-order and the 10th-order CROW structure at

2-mm waveband. Box-like transmission spectra are

measured with 3-dB bandwidth of 3.34 nm and 5.34

FinFet using wirebond technology.

connector from one tool to another.

OFC 2023 • 05–09 March 2023

Inverse-Designed Grating Arrays for High-Sensitiv-

ity Plenoptic Time-of-Flight Pixels, John Rollinson¹, Robert Karlicek¹, Mona Hella¹; ¹Rensselaer Polytechnic Inst., USA, We present a plenoptic time-of-flight pixel design using grating arrays with inverse-designed passive photonic power combining to achieve scalable signal-to-noise ratio. Experimental results are presented as a proof-of-principle demonstration of the pixel architecture.

W2A.6

W2A.5

Tuner-Free Lumped-Element Resonantly Enhanced Mach-Zehnder Modulator With Ultra-Wide Operating Wavelength Range, Manuel Ackermann¹, Alvaro Moscoso-Mártir¹, Florian Merget¹, Jeremy Witzens¹; ¹Inst. of Integrated Photonics RWTH, Germany, We demonstrate a resonantly enhanced Mach-Zehnder modulator utilizing highly overcoupled ring resonators with staggered resonances to achieve a 7-nm 1-dBpenalty operating range. It can be operated lumped element without tuning any of the resonators.

On-Chip Tunable Mode-Locked Comb Laser in Generic Foundry Platform, Mu-Chieh Lo1, Alex Bennett¹, Zichuan Zhou¹, Alfonso Ruocco¹, Zhixin Liu¹: ¹Univ. College London, UK. An integrated, passive, harmonically mode-locked laser fabricated utilizing a generic integration technology is reported. The device features both emission wavelength and comb spacing variability by using a colliding-pulse cavity composed of two tunable gratings.

W2A.8

Enhancement of Bandwidth-Responsivity Product in High-Speed Avalanche Photodiodes With Optimized Flip-Chip Bonding Package for Coherent Detection, None Naseem¹, Nan-Wei Chen², Syed Hasan Parvez¹, Zohauddin Ahmad¹, Sean Yang³, H.-S. Chen³, Hsiang-Szu Chang³, Jack J. Huang³, Jin-Wei Shi¹; ¹Department of Electrical Engineering, National Central Univ., Taiwan; ²Department of Electrical Engineering, Yuan Ze Univ., Taiwan; ³Source Photonics, Taiwan, Flip-chip bonding APDs with 14um window diameters are demonstrated. Widebandwidth (36GHz), high-responsivity (3.4A/W), low dark current (175nA) and high MMW output power (-1dBm at 40GHz) can be achieved simultaneously with 12.5mA l_{eat} under 0.9V_{hr}.

W2A.9

Aging Effects on the Attenuation Coefficient and Splice Losses in Installed Submarine Optical Cables., Roque A. Ciufo Poevs¹, Jean-Pierre Von Der Weid¹; ¹Pontificia Univ Catolica Rio de Janeiro, Brazil. Aging effects in submarine optical cables were evaluated with OTDR measurements along 12 years. Penalties from splice losses were twofold higher than those from fiber attenuation. Cables are expected to last more than 25 years.

W2A • Posters Session I (In-Person)—Continued

W2A.23

DFE and BCJR Performance With SD FEC in 112

GBd PAM4 IMDD Systems, Neboisa Stojanovic¹, Lin Youxi¹, Talha Rahman¹, Stefano Calabrò¹; ¹Huawei Technologies Co Ltd, Germany. Soft information quality of different DSP schemes followed by hybrid soft/hard decision FEC is investigated. We demonstrate in simulations and experiments that BCJR achieves a significant gain over DFE by providing better soft information.

W2A.24

Optical Multipath Interference Mitigation for PAM4 Transmission Using Line Coding and High-Pass Filtering, Ning Cheng¹, Dechao Zhang², Dawei Ge², Yan Song¹, Meijuan Ly¹, Shanglin Li¹, Bin Ly¹, Xuezhe Zheng1: ¹Innolight, China: ²China Mobile, China, A simple method using DC-balanced line-coding and receiver-side high-pass filtering is proposed to mitigate MPI in high-speed PAM4 transmission. 5-dB improvement in MPI tolerance is achieved in both simulations and experiments for 25GBd PAM4 transmissions

W2A.25

On the Impact of Spatial Mode Dispersion for Strongly-Coupled Multicore Fiber Submarine Transmission, Lin Sun¹, Bin Chen², Gordon Ning Liu¹, Yi Cai¹, Zhaohui Li³, Chao Lu⁴, Gangxiang Shen¹; ¹Soochow Univ., China: ²Hefei Univ. of technology. China: ³Sun Yat-sen Univ., China: ⁴The Hong Kong Polytechnic Univ., Hong Kong. Strongly-coupled multicore fibers exhibit the improved tolerance to fiber nonlinearity. Their potentials in optical submarine communications are investigated with considering the coupling length and spatial mode dispersion.

W2A.26

A Post-Equalization Technique for PDL Compensation in Coherent Optical Systems, Ahmed M. Medra¹, Hossein Najafi¹, Chuandong Li¹, Zhuhong Zhang¹; ¹Network, Huawei Technologies Canada, Canada. A practical post-equalization technique is proposed to compensate the loss due to polarization gain imbalance in an optical channel. The proposed scheme is implemented after legacy adaptive channel equalization and shown to provide significant performance gains.

W2A.27

Low-Complexity RMS-Enhanced Digital Pre-Emphasis Under Limited Transmitter Power and ENoB, Wing-Chau Ng¹, Qingyi Guo¹, Junho Chang¹, Tianyu Zhao¹, Meng Qiu¹, Xuefeng Tang¹, Zhiping Jiang¹, Chuandong Li¹; ¹Huawei Technologies Canada, Canada. We optimize digital pre-emphasis for narrow optical filtering using the balance among electrical RMS, equalization-enhanced noise and quantization, and experimentally show a low-complexity cutoff approach to enhance SNR in strong pre-emphasis.

W2A.28

Statistical Properties of NLIN in Presence of PDL, Ori Golani³, David Dahan^{1,2}; ¹Toga Networks - a Huawei company, Israel: ²Holon Inst. of Technology, Israel: ³Tel Aviv Univ., Israel, We model and investigate the statistical properties of the time-varying ISI model of XPM induced NLIN affected by PDL along the fiber link. We validate the analytical model by comparing to SSFM simulations.

W2A.29

A Closed-Form Expression for the ISRS GN Model Supporting Distributed Raman Amplification, Henrique Buglia¹, Mindaugas Jarmolovičius¹, Anastasiia Vasvlchenkova¹, Eric Sillekens¹, Lidia Galdino², Polina Bayvel¹, Robert I. Killey¹; ¹Univ. College London, UK; ²Corning, UK. A closed-form model for the nonlinear interference in distributed Raman amplified links is presented, the formula accounts for both forward and backward pumping. The model accurately estimates the received SNR over a 10 THz bandwidth.

W2A.30

Nonlinear Distortion Mitigation With Non-Orthogonal DFT-Precoding for DML-Based OFDM Optical Systems, Peiji Song¹, Zhouyi Hu², Yizhan Dai¹, Chun-Kit Chan1; 1Department of Information Engineering, The Chinese Univ. of Hong Kong, China; ²Aston Inst. of Photonic Technologies, Aston Univ., UK. We propose to use non-orthogonal DFT-matrix precoding to mitigate the nonlinear distortion induced by chirp and fiber dispersion in a 10-Gb/s DML-based OFDM optical system, with 0.83-dB sensitivity improvement over the third-order Volterra nonlinear equalizer.

W2A.31

Phase-Preserving Amplitude Regeneration in a Mamyshev Regenerator With mid-Stage Optical Phase Conjugation, Cheng Guo¹, Michael Vasilvev¹; ¹Department of Electrical Engineering, Univ. of Texas at Arlington, USA. We experimentally demonstrate phase-preserving amplitude regeneration of an RZ-QPSK signal by placing an optical phase conjugator between two Mamyshev regenerators, improving intensity noise 2.8 times. Q-factor by 2.4 dB and EVM by 4.0%.

W2A.32

Experimental Demonstration of Reconfigurable "Digital Average" of Two 20-Gbaud Phase-Encoded Data Channels Using Nonlinear Optical Wave Mixing, Amir Minoofar¹, Hao Song¹, Ahmed Almaiman², Narek Karapetvan¹, Wing Ko¹, Kaiheng Zou¹, Huibin Zhou¹, Muralekrishnan Ramakrishnan¹, Murali Annavaram¹, Jonathan Habif¹, Moshe Tur³, Alan Willner¹; ¹Univ. of Southern California, USA; ²King Saud Univ., Saudi Arabia: ³Tel Aviv Univ., Israel, We experimentally demonstrate the reconfigurable "digital average" of two 10/20-Gbaud phase-encoded data channels using two nonlinear optical stages. In the first nonlinear stage, we compute the average. In the

second nonlinear stage, we multicast the average value to the input signals wavelengths.

W2A.33

Quantum Noise Secured Terahertz Communications, Qiuzhuo Deng¹, Lu Zhang^{1,2}, Honggi Zhang¹, Zuomin Yang¹, Xiaodan Pang^{3,4}, Viačeslavs Bobrovs⁵, Sergei Popov³, Yixin Wu⁶, Xiongbin Yu⁶, Oskars Ozolins^{3,4}, Xianbin Yu^{1,2}; ¹College of Information Science and Electrical Engineering, Zhejiang Univ., China; ²Zhejiang Lab, China; ³Department of Applied Physics, KTH Royal Inst. of Technology, Sweden; ⁴RISE Research Inst.s of Sweden, Sweden; ⁵Inst. of Telecommunications, Riga Technical Univ., Latvia; 6Inst. of Strategic Research, Huawei Technologies Company, Ltd, China. The quantum noise based terahertz signal encryption scheme is proposed, a 16 Gbits⁻¹ secure terahertz communication system at 300 GHz with the optical communication realms is demonstrated. taking a significant step toward high-security wireless communications.

W2A.34

Delay Compensated Quad-Level Delta-Sigma Modulation Dual-Color DRoF System for Beyond 5G Mobile Fronthaul, Zu-Kai Weng¹, Pham Tien Dat¹, Atsushi Kanno^{2,1}, Tetsuva Kawanishi^{3,1}, Kouichi Akahane1: 1National Inst. of Information and Communications Technology, Japan; ²Nagoya Inst. of Technology, Japan; ³Waseda Univ., Japan. We demonstrated a high-performance dual-color B5G DRoF system using delay compensation. A guad-level 6-Gbit/s 64-QAM OFDM signal was successfully transmitted over the proposed system, showing a much better performance compared to the conventional 1-bit system.

W2A.35

Impact of Spatial Variations on Splitter-Tree-Based Integrated Optical Phased Arrays, Zhengxing Zhang¹, Milica Notaros¹, Zhengqi Gao¹, Uttara Chakraborty¹, Jelena Notaros¹, Duane Boning¹; ¹Massachusetts Inst. of Technology, USA, We consider the impact of spatially correlated geometric variations on splitter-tree-based integrated optical phased arrays. These variations can substantially affect the emitted beam. Our analysis is shown to be consistent with experimental results.

W2A.36

Controllable Passive Multi-Polarization-States Generator Based on Silicon Photonics for Quantum Communication, Kap-Joong Kim¹, Kyongchun Lim¹, Byung-Seok Choi¹, Wook-Jae Lee², Young-Ho Ko1, Joong-Seon Choe1, Minchul Kim1, Jong-Bum You³, Chun Ju Youn¹; ¹ETRI, Korea (the Republic of): ²Kongiu National Univ., Korea (the Republic of): ³National Nanofab Center, Korea (the Republic of). We demonstrate a silicon-based controllable multi-polarization-states generator for quantum key distribution. Our device can effectively generate various sets of well-defined four-polarization states using the thermo-optics effect and combine them

W2A.37

Receiver Noise Stability Calibration for CV-QKD,

into one port at a telecom-wavelength.

Sioerd P. van der Heide¹, João R. Frazão¹, Aaron Albores-Meija¹, Chigo M, Okonkwo¹; ¹Eindhoven Univ. of Technology, Netherlands. A method to investigate CV-QKD receiver stability is proposed and experimentally validated. Comparing <100kHz linewidth local oscillator lasers, we show long-term noise power variance differs more than tenfold, highlighting the importance of receiver hardware calibration.

W2A.38

Software-Defined Quantum Network Using a QKD-Secured SDN Controller and Encrypted Messages, Rodrigo Tessinari¹, Robert Woodward¹, Andrew Shields1: 1Toshiba Europe Ltd, UK, We propose and implement a software-defined network architecture that integrates the QKD SDN Controller within the QKD node, enabling it to use quantum keys to secure its communication with SDN agents while optimizing QKD-keys consumption.

12:00–14:00 IEEE/Optica Publishing Group Journal of Lightwave Technology 40th Anniversary Luncheon, Upper Level, Ballroom 20A

12:30–14:00 Unopposed Exhibit-only Time, Exhibit Hall

Show Floor Programming

NOSK • Network Operator Summit: Kevnote 10:15-10:45. Theater I

SWK Series: Next Generation Connectivity Presented by Sumitomo Electric Lightwave 10:15-10:45. Theater III

SF5 • Ethernet Alliance: Ethernet in Telecom: The Rise of ZR and ZR+ for Metro (and Beyond?) 10:30–11:30. Theater II

NOS1 • NOS Panel I: What's the Value of Optical Network Automation and How Can Optics Help 11:00-12:30, Theater I

OFCnet Quantum Network - Coexistence, Transporting Entanglements 11:00–11:30. Theater III

OFCnet High Performing Networks Demonstrations 11:40-12:10. Theater III

SF6 • OpenZR+: OpenZR+MSA -New Developments and Next Steps 11:45–12:45, Theater II

With Growing Bandwidth Demand **Driving Innovative Optical** Technologies, What Is the Impact on Network Architectures Today and Tomorrow? Presented by Infinera

12:20-12:50, Theater III

NOS2 • NOS II: Brownfield **Applications in Legacy Networks** 13:00-14:30. Theater I

SF7 • OIF: Defining 800ZR and 800LR; an OIF Update 13:00-14:00, Theater II

OFCnet Backstage Pass: Highlighting the Unsung Heroes of Optical Connectivity 13:00–13:30, Theater III

SF8 • OpenROADM: Open ROADM **MSA Updates and Demonstration** 13:45-14:45. Theater III

10:30-12:30 W2B • Posters Session II (Remote)

W2B.1

Thin-Film Lithium Niobate Photonic Devices on

8-Inch Silicon Substrates, Hengyu Wang¹, Yang Xu¹, Zhaoyi Li¹, Lianxi Ja², Shiyang Zhu³, Yuxi Wang³, Zhanshi Yao³, Shaonan Zheng¹, Qize Zhong¹, Yuan Dong¹, Ting Hu¹, 'Shanghai Univ., China; 'Shanghai Inst. of Microsystem and Information Technology, China; ³Huawei Technologies, China. Thin-film lithium niobate photonic devices are first demonstrated on 8-inch silicon substrates. The fabrication is done in a commercial semiconductor foundry. A waveguide propagation loss of 0.47±0.09 dB/cm is achieved at 1550 nm wavelength.

W2B.2

Heterogeneous Balanced Photodetector on Silicon Nitride With 30 GHz Bandwidth and 26 dB Common Mode Rejection Ratio, Junyi Gao', Ta Ching Tzu', Tasneem Fatema', Xiangwen Guo', Qianhuan Yu', Gabriele Navickaite², Michael Zervas², Michael Geiselmann², Andreas Beling'; 'Univ. of Virginia, USA; ²LIGENTEC SA., Switzerland. We demonstrate InGaAs/InP balanced photodiodes on Si₃N₄ waveguides with record-high 3-dB bandwidth of 30 GHz, 0.72 A/W responsivity, and high common mode rejection ratio (CMRR) of 26 dB at 30 GHz.

Spectral-to-Spatial Mapping for Channel-Definable

Information Transmission in Multimode Fiber, Ming Zhu She', Zhao Wang', Wei Li Zhang', 'Univ of Electronic Science & Tech China, China. The concept of spectral coding to control light is proposed for arbitrary spatial focusing through multimode fiber, where, utilizing the randomness of speckle pattern, transmission channel is established for encrypting information.

W2B.4

Wednesday, 8 March

Multimode Fiber Bandwidth Uniformity and its Impact on Optical Links in Hyperscale Datacenters, Oin Chen¹, Rui Lu¹, Peng Wang¹, Chongjin Xie², 'Alibaba Cloud, China; 'Alibaba Cloud, USA. We characterize multimode fiber bandwidth uniformity and its impact on optical links in data centers, discussing the importance of MMF bandwidth uniformity to data center deployment of the nextgeneration 100-Gb/s multimode products.

W2B.5

Nonlinear Impairment Scaling in Few-Mode Fiber Transmission Systems With Mode Permutation

Technique, Rui Xing¹, Xiaofan Ji¹, Yaping Liu¹, Zhiqun Yang¹, Zhanhua Huang¹, Lin Zhang^{1,2}, ¹Tianjin Univercity, China; ²Peng Cheng Laboratory, China. Few-mode fiber transmission systems with three states of the permutation strategies are evaluated using a GN model with MDL considered, for the first time. CMP strategy outperforms by 0.3 dB in terms of SNR difference among modes with an MDL of 0.1 dB/km.

W2B.6

Dependence of Raman Scattering in a Few-Mode Fiber Within Small Detuning Range, Hongtao Cheng¹, Shengjie Zhu¹, Liang Cui¹, Xiaoying Li¹; *itanjin Univ., China.* We measure the intensity of small detuning Raman scattering in different spatial and polarization mode in a common circular core few-mode fiber, and show the existence of principle mode affect the dependence of Raman scattering.

W2B.7

A Novel Distributed Spun Fiber Twist Sensor Based on Frequency-Scanning ϕ -OTDR, Can Chen¹, Zhiyong Zhao¹, Zhonghong Lin¹, Can Chen¹, Can Chen¹, Ming Tang¹; ¹Huazhong Univ. of Science and Techn, China. A novel distributed twist sensor utilizing frequency-scanning ϕ -OTDR in a spun fiber is theoretically analyzed and experimentally demonstrated by tracking the fiber twist induced frequency shift of correlation peak, enabling distributed quantitative twist measurement.

W2B.8

Reliable and Low-Complexity Multiple Performance Parameters Prediction for Optical Network Equipment, Yu Chen¹, Danshi Wang¹, Chunyu Zhang¹, Birg Ye², Yinqiu Jia², Jin Li¹, Min Zhang¹; *1BUPT, China*; ²State Key Laboratory of Mobile Network and Mobile Multimedia Technology, Shenzhen, 518055, China, China. A multi-objective and multi-step performance parameters prediction scheme based on SCINet for optical network equipment is proposed. It not only saves 83,96% of training time on average, but also

W2B.9

has high reliability.

Experimental Demonstration of an AWGR-Based Nanoseconds Optical Switching DCN, Yuanzhi Guo', Xuwei Xue', Bingli Guo', Daohang Dang', Yisong Zhao', Rui Ding', Jiapeng Zhao', Changsheng Yang', Shanguo Huang'; 'Beijing Univ. of Posts and Telecommunications, China. An arrayed waveguide grating router based nanoseconds optical switching data center network is experimental assessments validate the system achieves error-free communication with 465 ns server-to-server latency even at load of 0.9.

W2B.10

Real-Time Demonstration of a Low-Complexity PS Scheme for 130Gb/s WDM-OFDM-PON, Long Zhang', Kaihui Wang', Chen Wang', Junjie Ding', Ming Chen², Bohan Sang', Junting Shi', Bowen Zhu', Feng Wang', Li Zhao', Yun Chen', Ze Dong³, Xiangjun Xin⁴, Wen Zhou', Jianjun Yu', '*Fudan Univ*, *China*; '*Plunan Normal Univ*, *China*; '*Beijing Inst.* of *Technology, China.* We experimentally demonstrated a low-complexity probabilistic shaping scheme in a real-time 16QAM-OFDM-based WDM-PON. The PS-OFDM signal with a net rate of 131.88-Gb/s transmission over 25-km SSMF can be achieved with the BER less than 3.8×10³.

W2B.11

A Low-Latency DSM-Based ONU Activation Scheme for in-Service TDM-PON Without Quiet Windows, Yang Zou', Borui Li², Linsheng Zhong', Shenmao Zhang', Xiaoxiao Dai', Mengfan Cheng', Lei Deng', Qi Yang', Deming Liu'; 'Huazhong Univ of Science and Technology, China; ²Access Optical Technologies Lab, Optical Business Product Line, Huawei Technologies Co., Ltd., China. An activation method using DSM generated electrical tone as the identity of joining ONUs is proposed. The activation requests can be detected and distinguished without a quiet window

or degradation on the upstream traffic.

W2B.12

Deep Reservoir Computing for 100 Gbaud PAM6 IM/DD Transmission Impairment Mitigation, Mengyao Han^{1,2}, Muguang Wang¹, Yuchuan Fan^{2,3}, Toms Salgals⁵, Hadrien Louchet⁶, Richard Schatz², Markus Gruen⁶, Fabio Pittala⁶, Benjamin Krüger⁶, Thomas Dippon⁶, Lu Zhang⁴, Xianbin Yu⁴, Sandis Spolitis⁵, Viačeslavs Bobrovs⁵, Sergei Popov², Xiaodan Pang^{2,3} Oskars Ozolins^{3,2}; ¹Beijing Jiaotong Univ., China; ²KTH Royal Inst. of Technology, Sweden; ³RISE Research Inst.s of Sweden, Sweden: ⁴Zheijang Univ., China: ⁵Riga Technical Univ., Latvia: ⁶Keysight Technologies GmbH, Germany. We experimentally evaluate a deep Reservoir Computing (RC)-based post-equalization for 100 Gbaud PAM6 IM/DD transmissions. It achieves ~1 dB higher sensitivity than DFE, and ~50% implementation complexity reduction compared with the conventional RC configuration.

W2B.13

A More Than 20 Mrad/s Speed RSOP Monitoring Method With Large PMD Tolerance in Optical Coherent Communication Systems, Linan Shan', Xiaoguang Zhang', Peng Sun', Guanghao Yao', WanXin Zhao', Lixia Xi', Xiaosheng Xiao'; 'Beijing Univ of Posts & Telecom, China. We propose a RSOP monitoring method, integrated in DSP of the coherent receiver, which can reach the RSOP speed of more than 20Mrad/s with tolerance for residual CD and Iarge PMD along with second PMD.

W2B.14

Noisy Samples-Robust Neural Network Equalizer for Coherent Optical Transceiver Nonlinearity Compensation, Zicai Cao', Shuchang Yao², Longquan Dai', Ziheng Zhang', Jing Dai², Ming Luo³, Xi Xiao^{3,4}, Yaqin Wang², Qi Yang', Deming Liu', Lei Deng'; 'School of Optical and Electronic Information, Huazhong Univ. of Science and Technology, China; 'Fiberhome Telecommunication Technologies Co., LD, China; ²China Information and Communication Technologies Group Corporation (CICT), China; 'National Information Optoelectronics Innovation Center, China. We experimentally demonstrate a neural network equalizer with robustness for noisy

samples on a silicon photonics coherent transceiver

with a complexity reduction of over 50% at the BER of

1.25e-2 compared with a general structure.

W2B.15

Learned Perturbation-Aided Advanced Digital Backpropagation With Nonlinear Compensation Fusion for Subcarrier-Multiplexing Systems, Du Tang¹, Zhen Wu¹, Shuangyue Liu², Jiating Luo³, Ji Luo³, Bofang Zheng³, Yaojun Qiao¹; ¹The State Key Laboratory of Information Photonics and Optical Communications. School of Information and Communication Engineering, Beijing Univ. of Posts and Telecommunications, China: ²Department of Mobile Communications and Terminal Research, Research Inst. of China Telecommunication, China: ³B&P Laboratory, Huawei Technologies Co. Ltd., China. A learned perturbationaided advanced digital backpropagation (LP-ADBP) with nonlinear compensation fusion is proposed for subcarrier-multiplexing systems, 1-Step and 5-Step LP-ADBP provide similar performance as 5-Step and 10-Step ADBP but save ~73.3% and ~44.5% complexity, respectively.

W2B.16

32-λ×400 Gb/s Single-Carrier 120-GBaud QPSK Coherent Transmission Over 3075-km G.652.D Fiber Link Using OE-MCM Prototype Under Field-Deployed Configuration, Mingqing Zuo', Baoluo Yan², Dawei Ge¹, Dong Wang¹, Jiabin Wang², Xuechuan Chen², Hu Shi², Philippe Jennevé³, Shaoliang Zhang³, Miquel A. Mestre³, Dayou Qian³, Sheng Liu¹, Yunbo Li¹, Liuyan Han¹, Dechao Zhang¹, Han Li¹, Xiaodong Duan¹; 'China Mobile Research Inst., China; 'ZTE corporation, China; ³Cisco System Incorporation, USA. Enabled by OE-MCM prototype, record 32-λ×400 Gb/s single-carrier 120-Gbaud DP-QPSK transmission is achieved over 49-span 3075-km G.652.D fiber with a link configuration emulating the legacy large-loss field deployment for the first time.

W2B.17

PS Factor-Independent and Joint Polarization, Frequency Offset and Carrier Phase Recovery Scheme for Probabilistically Shaped QAM, Linsheng Fan', Yanfu Yang', Siyu Gong', Yong Chen', Yong Yao', 'Harbin Inst. of Technology, shenzhen, China. A joint polarization, frequency offset and carrier phase recovery scheme based on frequency domain pilot is proposed for PS-QAM. Our scheme is independent of PS factor and can track polarization rotation rate up to 20Mrad/s.

W2B.18

208km Ultra-Long Single Span Hybrid BOTDR and Φ-OTDR With ROPA Technology, Jiasheng Liu^{1,2},

W-DDR with a NorA Technology, Jasheng Llu⁻², Ming Li⁻², Jiekui Yu⁻², Mingchao Nie¹², Shiyu Zhang²³, Xingyun Chen¹², Guoliang He¹², Shujuan Sun¹², Man Tan¹², Qianggao Hu¹²; 'Accelink Technologies Co. Ltd, China; ²State Key Laboratory of Optical Communication Technologies and Networks, China; ³Wuhan Research Inst. of Posts and Telecommunications, China. Ultra-long single span hybrid BOTDR and Φ-OTDR system with ROPA technology is proposed. Using double heterodyne detection configuration, high order Raman amplifiers, cascaded RGUs, 208km unrepeatered real time simultaneous temperature and vibration measurement is achieved.

W2B.19

Optoelectronic Oscillator Based on SBS-Assisted Parity-Time Symmetry. Lin Wang1, Yifan Liu¹, Yuan Yu¹², Xinliang Zhang¹²; ¹Huazhong Univ. of Science and Technology, China; ²Optics Valley Laboratory, China. A parity-time symmetric optoelectronic oscillator is constructed based on stimulated Brillouin scattering. A stable microwave signal at 9.66 GHz is generated with a phase noise of -103.9 dBc/Hz at

W2B.20

an offset frequency of 10 kHz.

Accurate Extraction of Brillouin Frequency Shift Using Single Deep Neural Network in BOTDA Sensing System With Non-Local Effect, Yuhao Qian¹, Guijiang Yang¹, Keyan Zeng¹, Liang Wang¹, Ming Tang¹, Deming Liu¹; ¹Huazhong Univ. of Sci. & Tech., China. A single DNN model has been developed for accurate extraction of both Brillouin frequency shift without and with NLE. The scheme is practical and greatly improves the system tolerance to NLE without any hardware modification.

ow Mode Eiker

Exhibit Hall B1

W2B • Posters Session II (Remote)—Continued

W2B.21

Simultaneous Measurements of Angle of Arrival and Doppler Frequency Shift Based on Silicon Modulators, Sihan Chen², Qiang Zhang¹, Jingyang Fan², Xingyi Jiang², Shuyue Zhang², Hui Yu¹a², Izhejiang Lab, China; ²College of Information Science and Electronic Engineering, Zhejiang Univ., China. We experimentally demonstrate the simultaneous measurements of the microwave angle of arrival and Doppler frequency shift by silicon modulators. The measurement errors of AOA and DFS are less than 3° and 7.2×10¹⁰ Hz at 30 GHz, respectively.

W2B.22

PAM8 WDM Transmission Based on a Single Time

Lens Source With Geometric Shaping, Xiaoyu Xu¹, Peter David Girouard¹, Metodi Plamenov Yankov¹, Michael Galili¹, Leif Katsuo Oxenløwe¹, Pengyu Guan¹; ¹DTU Electro, Denmark. We demonstrate a PAM8 WDM-PON transmission using a single time lens source. Geometric shaping is used to minimize the impact of power-dependent noise. 28×1.5 Gb/s WDM signals are transmitted over 26 km with BER below 3.8×10⁻³.

W2B.23

A Multi-Source Signals Separation Algorithm for Identifying the Threatening Signals Applied in Fiber-Optic Distributed Acoustic Sensor, Tao He¹, Oizhen Sun¹, Zhang s. Xiong¹, Hao Li¹, Zhijun Yan¹, Deming Liu¹; ¹Huazhong Univ of Science and Technology, China. A multi-source signals separation algorithm is proposed to identify the potential threatening signals submerged in the strong background noises. Finally, the recognition rate of the mixed signals is improved from 62.83% to 92.36%.

W2B.24

High-Resolution Frequency Identification of Wideband Microwave Signal Using a Hybrid Optical Filter, Haoyan Liu', Xu Hong', Yihao Cheng', Bin Wang', Weifeng Zhang'; 'Beijing Inst. of Technology, China. We propose a photonic approach for frequency identification of broadband microwave signal with a high resolution using a hybrid optical filter. A frequency resolution of 20 MHz and a measurement accuracy of 5.6 MHz are experimentally demonstrated within a measurement range of 2-35 GHz.

Demonstration of PDM-2048QAM W-Band Signal Delivery Over 4.6 km Wireless Transmission Employing One bit DSM, Wen Zhou¹, Xiongwei Yang¹, Weiping Li¹, Feng Wang¹, Bowen Zhu¹, Huajiong Lin², Junting Shi¹, Tangyao Xie³, Kaihui Wang¹, Li Zhao¹, Jianguo Yu³, Feng Zhao⁴, Jianjun Yu¹; ¹Fudan Univ., China; ²Huawei Technologies Co., Ltd, China; ³Beijing Univ. of Posts and Telecommunications, China; ⁴School of Electronic Engineering, Xi'an Univ. of Posts and Telecommunications, China. In a photonics-aided mm-wave communication system, we successfully achieved W-band long-distance transmission of PDM-1024QAM/2048QAM signals over 4.6 km by using a PTFE lenses and Delta-Sigma Modulator (DSM).

W2B.29 Integrated Source of Telecom-Band Photon-Pairs Based on High Index Silica Glass Spiral Waveguides, Liang Cu¹¹, Hao Feng¹, Xiaotian Zhu², Changyue Wang¹, Z. Y. Ou², Xiaoying Li¹, Brent E. Little³, Sai T. Chu²; ITianjin Univ., China; ²City Univ. of Hong Kong, Hong Kong; ³QXP Inc., China. We generate correlated photon-pairs via spontaneous four-wave mixing in high index silica glass spiral waveguides. Results show that spontaneous Raman scattering is the main noise origin, and propagation loss limits the ootimum length of waveguides.

Deep Learning-Based End-to-End Bit-Wise Autoencoder for G-Band Fiber-Terahertz Integrated DFT-S-OFDM Communication System, Zhongya Li¹, Changle Huang¹, Junilan Jia¹, Guoqiang Li¹, Wangwei Shen¹, Jiangyang Shi¹, Junwen Zhang^{1,2}, Ziwei Li^{1,2}, Chao Shen^{1,2}, Nan Chi^{1,2}, ¹Fudan Univ, China; ²Pang Cheng Lab, China. We proposed and experimentally demonstrated a bit-wise end-to-end deep-learningbased autoencoder for a fiber-THz integrated DFT-S-OFDM communication system at 209 GHz. More than 5.5-dB sensitivity gain is achieved compared with traditional DFT-S-OFDM system at 50Gbps.

W2B.27

W2B.26

W2B.25

Millimeter-Level Resolution Photonic Multiband Radar Using a Single MZM and Sub-GHz-Bandwidth Electronics, Peixuan Li¹, Wenlin Bai¹, Xihua Zou¹, Ningyuan Zhong¹, Wei Pan¹, Lianshan Yan¹; *ISouthwest Jiaotong Unix, China.* We here propose a novel cost-effective millimeter-level resolution photonic multiband radar system using a single MZM driven by a 1-GHz-bandwidth LFM signal. It experimentally shows an ~8.5-mm range resolution through coherence-processing-free multiband data fusion.

W2B.28

Digital Filter Design for Experimental Continuous-Variable Quantum Key Distribution, Abdulmohsen Alsaui^{1,2}, Vazeed Alwehaibi^{1,2}, Anil Prabhakar¹, Deepa Venkitesh¹; 'Department of Electrical Engineering, Indian Inst. of Technology Madras, India; 'Research and Development Department, National Company of Telecommunications and Information Security, Saudi Arabia. We explore the effect of digital filter design on enhancing the performance of an experimental CV-QKD system. The filtering procedure is anticipated to enable greater than 20 Mbaud/s at 20 km fiber length.

Show Floor Programming

NOSK • Network Operator Summit: Keynote 10:15–10:45, Theater I

Technology Showcase Presented by Sumitomo 10:15–10:45, Theater III

SF5 • Ethernet Alliance: Ethernet in Telecom: The Rise of ZR and ZR+ for Metro (and Beyond?) 10:30–11:30, Theater II

NOS1 • NOS Panel I: What's the Value of Optical Network Automation and How Can Optics Help

11:00-12:30, Theater I

OFCnet Quantum Network - Coexistence, Transporting Entanglements 11:00–11:30, Theater III

OFCnet High Performing Networks Demonstrations 11:40–12:10, Theater III

SF6 • OpenZR+: OpenZR+MSA - New Developments and Next Steps

11:45–12:45, Theater II

Technology Showcase Presented by Infinera 12:20–12:50, Theater III

NOS2 • NOS II: Brownfield Applications in Legacy Networks 13:00–14:30, *Theater I*

SF7 • OIF: Defining 800ZR and 800LR; an OIF Update 13:00–14:00, Theater II

OFCnet Backstage Pass: Highlighting the Unsung Heroes of Optical Connectivity 13:00–13:30, Theater III

SF8 • OpenROADM: Open ROADM MSA Updates and Demonstration 13:45–14:45, Theater III

Room 1AB	Room 2	Room 3	Room 6C	Room 6D	Room 6E
14:00–16:00 W3A • Symposium: Beyond the Hype of Network Analytics: Use Cases, Feasibility and Barriers I Presider: Loukas Paraschis; IEEE Communication Society and Alphawave Semi, USA and Elaine Wong; Univ. of Melbourne, Australia	14:00–16:00 W3B • Special Session: Photonics for Visible Wavelengths II Presider: Fotini Karinou; Microsoft Research Ltd, UK	14:00–16:00 W3C • Devices for Quantum Technologies (Joint D5/SCQ) Presider: Michael Vasilyev; Univ. of Texas at Arlington, USA	14:00–16:00 W3D • Modulators and Transceivers Presider: Frank Chang; Source Photonics, USA	14:00–16:00 W3E • Transmission Impairment Mitigation and Compensation Techniques Presider: Dario Pilori; Istituto Nazionale di Ricerca Metrologic, Italy	14:00–16:00 W3F • Convergent Optical Access for Mobile Connectivity Presider: Luiz Anet Neto; IMT Atlantique, France
W3A.1 • 14:00 Invited Title to be Announced, Andrew Lord'; 'BT Applied Research, UK. Abstract not available.	W3B.1 • 14:00 Invited Visible Light Components: Fibers and Photodetectors, Joyce K. Poon ¹ ; ¹ Max- Planck-Inst fur Mikrostrukturphysik, Ger- many. Abstract not available.	W3C.1 • 14:00 Invited Nonlinear and Quantum Optics in Periodi- cally-Poled Optical Fiber, Li Qian'; 'Univ. of Toronto, Canada. We will review methods of generating entangled and hyper-entangled	W3D.1 • 14:00 Invited State of Art of 800G/1.6T for Datacom and Coherent and Outlook of 3.2T, Xiang Zhou', Cedric Lam', Ryohei Urata', Hong Liu'; 'Google LLC, USA. We review state-of-	W3E.1 • 14:00 Invited Recent Advances in Carrier Phase Recov- ery Algorithms, Fernando Guiomar ¹ , Manu- el Neves ¹ , Abel Lorences-Riesgo ² , Celestino Sanches Martins ² , Sami Mumtaz ² , Yann	W3F.1 • 14:00 Invited Open RAN Mobile Access: the View of a Operator on an End-to-End Implement tion, Carlo Cavazzoni', Marco Caretti Alessandro Percelsi', Mauro Agus'; 'Th

94

W3A.2 • 14:20 Invited

How Traffic Analytics Shapes Traffic Engineering, Topology Engineering, and Capacity Planning of Jupiter, Anny Xijia Zheng¹; ¹Google LLC, USA. Abstract not available.

W3B.2 • 14:20 Invited

From Device to Module: Silicon-Nitride for Visible Light, Douwe Geuzebroek¹; ¹LioniX International, Netherlands. Abstract not available.

OFC 2023 • 05–09 March 2023

photon pairs directly in periodically-poled silica fiber (PPSF) through spontaneous parametric down conversion (SPDC), based on the induced second-order nonlinearity in PPSF. Due to the extreme low birefringence in fibre, broadband polarization-entangled photon pairs can be generated without compensation or erasure of which-way information.

the-art datacenter technologies for 800G, 1.6T and beyond interconnect speeds, focusing on 200G per-lane IM-DD (intensity modulated-direct detect) and 800G-LR1 coherent-lite transmissions.

Frignac², Gabriel Charlet², Paulo Monteiro¹; ¹Instituto De Telecomunicacoes, Portugal; ²Huawei Technologies France, France. We review the most recent advances in carrier phase estimation algorithms for coherent optical communications, with special emphasis on multi-carrier modulation systems and on the interplay between linear and nonlinear phase noise sources.

of an entaetti¹, ¹TIM (Telecom Italia), Italy. This paper describes some challenges that an operator must face when setting up the environment to evaluate end-to-end 5G mobile networks, with a specific focus on the RAN segment implemented by disaggregated Open RAN solutions.

Ro	oom 6F	Room 7AB	Room 8	Room 9	Show Floor Programming
14:00–16:00 W3G • Photoni Computing and	c Processing for ML	14:00–16:00 W3H • Coherent Pluggables and Field Trials Presider: Dirk Van Den Borne; Juniper Networks Inc., Germany	14:00–15:45 W3I • Enabling Technology for Free Space Optical Communications Presider: Bernhard Schrenk; AIT Austrian Inst. of Technology, Austria	14:00–16:00 W3J • Sensing, Devices and OTDR Presider: Peng-Chun Peng; National Taipei Univ. of Technology, Taiwan	SF8 • OpenROADM: Open ROADM MSA Updates and Demonstration 13:45–14:45, Theater III SF9 • FBA: The State of Fiber in
					America 14:15–15:15, Theater II

W3G.1 • 14:00 Top-Scored

DDOS Attack Identification via a Silicon Photonic Deep Neural Network With 50 GHz Input and Weight Update, Apostolos Tsakyridis', George Giamougiannis', Militadis Moralis-Pegios', George Dabos', Manos Kirtas', Nikolaos Passalis', Anastasios Tefas', Dimitrios Kalavrouziotis', Dimitris Syrivelis', Paraskevas Bakopoulos², Elad Mentovich³, Nikos Pleros'; 'Aristotle Univ. of Thessaloniki, Greece; ²NVIDIA, Greece; ³NVIDIA, Israel. We experimentally demonstrate distributed denial of service (DDOS) attack identification using Deep Learning over a photonic neuromorphic engine that supports both input signal and weight update at 50 GHz, reporting a Cohen's K-score of 0.636.

W3H.1 • 14:00

Real-Time Point-to-Multipoint for Coherent Optical Broadcast and Aggregation - Enabled by Digital Subcarrier Multiplexing, Amir Rashidinejad¹, Amin Yekani¹, Tobias A. Eriksson², Antonio Napoli³, Robert Maher⁴, Aditya Kakkar¹, Vince Dominic⁴, Thomas Duthel³, Mark Missey⁴, Parmijit Samra⁴, Don Pavinski⁴, Peter Evans⁴, Warren Sande⁴, Mehdi Torbatian¹, Chris Fludger³, Han Sun¹, Mehrdad Ziari⁴, Fady Masoud¹, Azmina Somani¹, Dave Welch⁴; ¹Infinera Canada, Canada; ²Infinera Sweden, Sweden; ³Infinera Germany, Germany; ⁴Infinera USA, USA. We report on the first real-time operation of coherent point-tomultipoint in high-speed fiber-optic communications. The broadcast and aggregation network consists of a 400 Gb/s hub transceiver achieving post-FEC errorfree communication with 4×100 Gb/s leaf nodes, 5 – 50 km away.

W3G.2 • 14:15 Invited

Silicon Photonic Hopfield-Like Electro-Optical Recurrent Network for Time-Series Data Processing and Recognition, Guangwei Cong', Noritsugu Yamamoto', Rai Kou', Yuriko Maegami', Morifumi Ohno', Koji Yamada'; 'AIST (Natl Inst of Adv Indust Sci&Tech), Japan. We propose and experimentally demonstrate a Hopfield-like electro-optical recurrent network based on silicon photonic circuits for processing time-series data to extract feature vectors just by one-time sampling, which can offer robust and simple waveform recognition.

W3H.2 • 14:15

Interoperable 400ZR Deployment at Cloud Scale, Chuan Qin¹, Binbin Guan¹, Kyle Edwards¹, Jian Kong¹, Ryan Morgan¹, Yawei Yin¹, Avinash Pathak¹, Mounika Banda¹, Sridharan J¹, Govardan Chandrababu¹, Jeetesh Jain¹, Jamie Gaudette¹; ¹Microsoft Azure Networking, USA. We report 400ZR deployment data from the Microsoft private network, highlighting module interoperability, performance stability and availability, and parallel module firmware upgrade at cloud scale. W3I.1 • 14:00 Top-Scored Plasmonic Modulators for Future Highest-Speed

Free Space Optical Communications, Laurenz Kulmer¹, Yannik Horst¹, Bertold Ian Bitachon¹, Marcel Destraz², Tobias Blatter¹, Matthieu Rimlinger¹, Killian Keller¹, Valentino Tedaldi², Patrick Habegger², Eva De Leo², Wolfgang Heni², Claudia Hoessbacher², Aurélie Bonnefois³, Caroline Lim^{3,4}, Jean-Marc Conan³, Joseph Montri³, Beatrice Sorrente³, Cvril Petit³, Nicolas Védrenne³, Loann Pommarel⁵, Hannah Lindberg⁵ Laurent Francou⁵, Daniel Matter⁵, Arnaud Le Kernec⁶, Anaëlle Maho⁶, Simon Lévêque⁶, Michael Sotom⁶, Benedikt Baeuerle², Juerg Leuthold^{1,2}; ¹ETH Zurich, Switzerland: ²Polariton Technologies AG. Switzerland: ³ONERA, France: ⁴LNE-SYRTE, France: ⁵Thales-Alenia Space Switzerland, Switzerland: ⁶Thales Alenia Space France, France, Plasmonic modulators have been assessed for operation up to 200 GBaud in a turbulent 53 km free-space-optical link. They are shown to withstand space radiation and large temperature ranges making them ideal for space applications.

W3I.2 • 14:15 Top-Scored

100-Gbps 2-SDM 2.WDM FSO Beam Direct Detection Using Resonant Cavity 4x4 Photodetector Array, Toshimasa Umezawa¹, Atsushi Matsumoto¹, Kouichi Akahane¹, Atsushi Kanno¹², Naokatsu Yamamoto¹; ¹National Inst of Information & Comm Tech, Japan; ²Nagoya Inst. of Technology, Japan. We fabricated a high-speed resonant cavity 4x4 photodetector array, which has two functions for high optical alignment robustness and specific wavelength selection. In the 2-SDM 2-WDM FSO communication, 100-Gbps high data rate was successfully demonstrated.

W3J.1 • 14:00

Frequency Averaging With Rotation Angle Tracking Technique in Phase-OTDR DAS for Large-Scale Vibration Measurement, Yoshifumi Wakisaka', Hiroshi Takahashi', Daisuke Lida', Takahiro Ishimaru', Yusuke Koshikiya', 'NTT Corporation, Japan. Sensitivity degradation specific to frequency-multiplexed phase OTDR in measuring large strain change is clarified for the first time. We demonstrate one solution based on frequency averaging with rotation angle tracking technique to measure sub-µ£ vibrations.

W3J.2 • 14:15

Practical Considerations on Using Gaussian Shape Pulses in phi-OTDR Systems, Felipe M. Meijueiro², Pedro O. Mariz de Carvalho², Sérgio Barcelos³, Luis Ernesto Y. Herrera¹; *iPhotonics Innovation Inst., Brazil;* ²Fiberwork Optical Communications Ltda, Brazil; ³Future Photonics, USA. This paper experimentally demonstrates practical advantages and limitations on using Gaussian shape pulses for phi-OTDRs systems by measuring the SNR of the detected vibration in the far end of a standard single mode fiber.

Room 1AB	Room 2	Room 3	Room 6C	Room 6D	Room 6E
W3A • Symposium: Beyond the Hype of Network Analytics: Use Cases, Feasibility and Barriers I— Continued	W3B • Special Session: Photonics for Visible Wavelengths II—Continued	W3C • Devices for Quantum Technologies (Joint D5/ SCQ)—Continued	W3D • Modulators and Transceivers—Continued	W3E • Transmission Impairment Mitigation and Compensation Techniques— Continued	W3F • Convergent Optical Access for Mobile Connectivity—Continued
		W3C.2 • 14:30 Entanglement Measurement Using Pump- Phase Control on an Up-Conversion Detector, Kim Lee ¹ , Paul Moraw ¹ , Daniel Reilly ¹ , Gregory S. Kanter ¹ ; ¹ NuCrypt, USA. We measure sequential time-bin entangled light by dynamically adjusting the pump phase of an up-conversion detector, allowing fast basis state control without adding loss to the quantum signal.	W3D.2 • 14:30 Top-Scored 3.2Tb/s Heterogeneous Photonic Inte- grated Circuit Chip in a Co-Packaged Optics Configuration, Damien Lambert', Jeff Rahn ² , Majid Sodagar', Murtaza Askari', Paveen Apiratikul', John Spann', Thang Pham ² , Yishen Huang ² , Stephen Krasu- lick'; 'Skorpios Technologies Inc., USA; ² Meta Platforms, Inc., USA. We present a low-cost, scalable 3.2Tbps heterogenous photonic integrated circuit chip assembled in a co-packaged optics configuration. The integration of III-V material directly into the Silicon-Photonic chip offers clear form-factor, density, and thermal dissipation advantages.	W3E.2 • 14:30 Pilot-Aided Pump Dithering Removal in Degenerate FWM-Based Optical Phase Conjugation Systems With Higher-Order QAM, Jiaqian Yang', Eric Sillekens', Ronit S. Sohanpal', Filipe Ferreira', Zhixin Liu', Polina Bayvel', Robert I. Killey'; 'Univ. Col- lege London, UK. A pump dithering removal algorithm, based on pilot sequence-aided DSP, is proposed and experimentally validated in dual polarization 64QAM optical phase conjugation system. A 4.2dB SNR improvement was observed due to the SBS suppression.	W3F.2 • 14:30 Can LAN-Wavelength Division Multiplexing Meet the Evolution of B5G/6G Terabit/s Fronthaul Networks?, Qingsong Wang', Jiao Zhang'.2, Junhao Zhang', Bingchang Hua ² , Jian Chen', Yuancheng Cai ^{1,2} , Mingzheng Lei ² , Yucong Zou ² , Liang Tian ² , Min Zhu ^{1,2} , 'National Mobile Com- munications Research Laboratory, Southeast Univ, China; ² Purple Mountain Laboratories, China. We experimentally demonstrate a LAN-WDM access system with a record bit rate of 2 Tb/s (250 Gbit/s×8) PS-PAM-8 signal with joint equalization techniques to support the evolution of future mobile fronthaul networks with low cost.
W3A.3 • 14:40 Invited Analytics for Datacenter Interconnect Optical Networks, Chongjin Xie'; 'Alibaba Group, USA. Abstract not available.	W3B.3 • 14:40 Invited Scaling Visible SiN Integrated Photonics and its Applications, Michael Geiselmann ¹ , ¹ LIGENTEC, Switzerland. Abstract not available.	W3C.3 • 14:45 An Acousto-Optic Modulator Based High Performance Optical Switch for Quantum Technology in Fiber Communication Band, Wen Qi Li ¹ , Qiqi Deng ¹ , Xueshi Guo ¹ , Xiaoying Li ¹ ; <i>Vianjin Univ., China. We</i> demonstrate an optical switch based on the interferometric enhancement of acousto- optic diffraction. The high transmitting efficiency of 92% and the high isolation of 74 dB make it a powerful tool for quantum technology.	W3D.3 • 14:45 Top-Scored 800 Gbps Silicon Photonics Transmitter PIC With Integrated Lasers in an Open Market Platform, Molly Piels', John Sonkoly', Krzysztof Szczerba', Brandon Gomez', Han Yun', Jared Bauters', Hongwei Zhao', Mark Williams', John Parker', Anand Ramaswamy', Erik Norberg', 'OpenLight Photonics, USA.An uncooled 800Gb/s-DR8 silicon photonics transmitter PIC with fully integrated lasers and 1.0 Vpp drive swing modulators in an open market platform is demonstrated for data center applications.	W3E.3 • 14:45 MIMO Coding Technique for PDL and Crosstalk Mitigation in Optical Transmis- sion Systems, Akram A. Abouseiff, Ghaya Rekaya-Ben Othman ^{1,2} , Yves Jaouen ² ; ¹ MI- MOPT Technology, France; ² Telecom Paris, Institut Polytechnique de Paris, France. We propose new coding technique, called IQ-code, to mitigate PDL and inter-channel crosstalk on optical fiber transmission. We obtain 0.3-0.5 dB OSNR gain at FEC limit for any number of sub-carrier by simple ZF decoding.	W3F.3 • 14:45 Demonstration of Point-to-Multipoint 100G Coherent PON to Support Broad- band Access and BSG/6G Mobile X-Haul, Yingxin Wei ¹ , Jiao Zhang ¹² , Weidong Tong ¹ , Bingchang Hua ² , Qinu L ¹¹ , Junhao Zhang ¹ , Mingzheng Lei ² , Yuancheng Cai ¹² , Yucong Zou ² , Liang Tian ² , Min Zhu ¹² ; 'Southeast Univ, China; ² Purple Mountain Laboratories, China. We experimentally demonstrate a rate-flexible point-to-multipoint 100G coherent PON with downlink and uplink using digital subcarrier multiplexing to simultaneously support up to 64 nodes for fixed broadband and W-band mmWave wireless access.
W3A.4 • 15:00 Invite DCI Analytics, Vipul Deokar ¹ ; 'Meta Platforms, USA. Abstract not available.	W3B.4 • 15:00 Invited Visible-Light Foundry Platform From AIM Photonics, Todd H. Stievater ¹ ; ¹ US Naval Research Laboratory, USA. Abstract not available.	W3C.4 • 15:00 Guard-Ring Free InGaAs/InP Single Photon Avalanche Diodes for C-Band Quantum Communication, Pascal Rustige ¹ , Jan Krause ¹ , Lorenz Eckold ¹ , Patrick Runge ¹ , Matrin Schell ^{1,2} , ¹ Fraunhofer Hein- rich Hertz Inst., Germany; ² Technical Univ. Berlin, Germany. We present a guard-ring free InGaAs/InP single photon avalanche diode with 20 µm diameter for the optical C-band. At 225 K, 25.6 µs dead time and 17% detection efficiency, the dark count rate is 3 kcps with 0.5% afterpulsing probability. This corresponds to a quantum bit error rate of about 1.2% for 625 MHz timebin-phase BB84 QKD over 125 km.	W3D.4 • 15:00 First Demonstration of MWDM-Based 400G-LR4 Over 10-km SSMF Supporting 400GE and OTN Dual Rates, Dong Wang ¹ , Mingqing Zuo ¹ , Wei Zhang ² , Tao Lin ³ , Jiang Sun ¹ , Tao Gui ² , Wupin Zhang ³ , Dawei Ge ¹ , Chendi Jiang ² , Chenggang Liu ³ , Liuyan Han ¹ , Dechao Zhang ¹ , Xiaodong Dua ¹ , Han Li ¹ , 'China Mobile Research Inst., China; 'Huawei, China; ³ Accelink, China. We report the first demonstration of cost- effective 400G-LR4 optical module based on O-band MWDM, achieving error-free transmission of both 400GE and OTN rates over 10-km SSMF with an optical link budget of over 6.7 dB.	W3E.4 • 15:00 On the Nonlinearity Tolerance of Using Short DM Blocklengths for SOA Booster in Coherent Systems, Trung-Hien Nguyen ¹ , Celestino Sanches Martins ¹ , Abel Lorences- Riesgo ¹ , Dylan Le Gac ¹ , Sami Mumta ² , Losif Demirtzioglou ¹ , Nayla El Dahdah ¹ , Romain Brenot ¹ , Yann Frignac ¹ , Gabriel Charlet ¹ , Yu Zhao ¹ , 'Huawei Technologies France, Paris Research Center, Optical Communication Technology Lab, France. SOA nonlinearity tolerance is experimentally demonstrated for 68-Gbaud single-carrier/8-carrier PCS- 64QAM systems. 1.4-dB additional output power is obtained with a 256 blocklength ESS, at the similar optimal SNR and rate loss of long blocklength CCDM.	W3F.4 • 15:00 End-to-End Slicing via O-RAN and Soft- ware Defined Optical Access, Carlo Centofanti ¹ , Andrea Marotta ¹ , Dajana Cassioli ¹ , Fabio Graziosi ¹ , Venkateswarlu Gudepu ² , Koteswarano Kondepu ² ; <i>DISIM</i> , Univ. of L'Aquila, Italy; ² CSE, Indian Inst. of Technology Dharwad, India. We propose an end-to-end slice management strategy which exploits the programmability of O-RAN and software defined optical access. Advantages in terms of user experienced latency and packet loss are experimentally evaluated.

Room 6F	Room 7AB	Room 8	Room 9	Show Floor Programming
W3G • Photonic Processing for Computing and ML—Continued	W3H • Coherent Pluggables and Field Trials—Continued	W3I • Enabling Technology for Free Space Optical Communications— Continued	W3J • Sensing, Devices and OTDR—Continued	SF9 • FBA: The State of Fiber in America 14:15–15:15, Theater II
	W3H.3 • 14:30 Invited ZR 400G & 800G Use Cases, Trials, Deployments and Future Prospects, Russell Davey ¹ , Md Asif Iqbal ² , Paul Wright ² ; 'Networks, BT, UK; ² Applied Research, BT, UK. The paper will review options and use cases for 400Gbit/s and 800Gbit/s deployed in the core of a major national operator, including 400Gbit/s ZR/ZR+ optics embedded in routers and external transponders.	W31.3 • 14:30 Alignment-Tolerant Fi-Wi-Fi Free-Space Optical Bridge, Florian Honz', Aina Val-Marti', Philip Walther?, Hannes Hübel', Bernhard Schrenk'; 'AIT Austrian Inst. of Technology, Austria; 'Faculty of Physics, Univ. of Vienna, Universitat Wien, Wien, Wien, AT, academic, Austria. We demonstrate a simplified out-door FSO link with modal split for down-/uplink and confirm its long-term stability without active beam tracking. We further prove the duality of modal and directional split through penalty-free full-duplex transmission.	W3J.3 • 14:30 Simultaneous Temperature and Acoustic Sensing With Coherent Correlation OTDR, André Sandma- nn ¹ , Florian Azendorf ¹ , Michael Eiselt ¹ ; ¹ ADVA Optical Networking SE, Germany. Superimposed temperature variations and dynamic strain applied through a 400 Hz acoustic signal on a 195 m single-mode fiber section are successfully measured using a coherent correlation optical time domain reflectometry as an interrogator.	MW4 • MW Panel IV: Performance-Centric Long Haul 14:45–16:15, Theater I Bringing Order to Chaos – OIF – Part 1 Presented by OIF 15:00–15:30, Theater III
W3G.3 • 14:45 High-Speed and Energy-Efficient non-Volatile Memristive III-v-on-Silicon Photonic Phase Shifter, Zhuoran Fang ^{2,1} , Bassem Tossoun ² , Antoine Descos ² , Di Liang ² , Xue Huang ² , Geza Kurczveil ² , Arka Majum- dar ¹ , Raymond Beausoleil ² ; ¹ Univ. of Washington, USA; ² Hewlett Packard Labs, USA. We demonstrated a non- volatile III-V-on-silicon photonic phase shifter based on HfO ₂ memristor with ~400 fJ switching energy, 100 ns switching speed, and an excellent endurance of over 800 cycles.	W3H.4 • 15:00 Top-Scored Field Trial of Coexistence and Simultaneous Switching of Real-Time Fiber Sensing and 400GbE Supporting DCI and 5G Mobile Services, Yue-Kai Huang', Zehao Wang ² , Ezra Ip ³ , Zhenzhou Qi ² , Gil Zussman ⁴ , Daniel C. Kilper ¹ , Koji Asahi ⁸ , Hideo Kageshima ⁵ , Yoshiaki Aono ⁵ , Tingjun Chen ² ; 'Trinity College Dublin, Ireland; 'Electrical and Computer Engineering, Duke Univ., USA; 'NEC Laboratories America, USA; 'Electrical Engineering, Columbia Univ., USA; 'Photonic System Development, NEC Corporation, Japan. Coexistence of real-time constant-amplitude distributed acoustic sensing (DAS) and 400GbE signals is verified by field trial over metro fibers, demonstrating no QoT impact during co-propagation and supporting preemptive DAS- informed optical path switching before link failure.	W31.4 • 14:45 High Data Rate Optical Wireless Communication Over Wide Range by Using Nonuniform-Space Optical Phased Array, Yingzhi Li ¹ , Baisong Chen ¹ , Min Tao ¹ , Quanxin Na ² , Xianshu Luo ² , Guo-Qiang Lo ³ , Qijie Xie ² , Junfeng Song ^{1,2} ; 'Jilin Univ., China; ² Peng Cheng Laboratory, China; ³ Advance Micro Foundry, Singapore. We demonstrate a high-data-rate optical wireless communication (OWC) system over wide steering range by using a nonuniform-space optical-phased-array (OPA) chip. More than 70 Gb/s data transmission covering 100° steering range over 10 m is achieved.	W3J.4 • 14:45 Hybrid Coding Ultra-Weak Fiber Bragg Grating (WVFBG) Array for High Spatial Resolution Temper- ature Sensing, Xiangpeng Xiao ¹² , Qingguo Song ¹² , Weiliang Zhao ¹ , Hao L ¹² , Qizhen Sun ¹² , Zhijun Yan ¹² ; ¹ Huazhong Univ of Science and Technology, China; ² Wuxi Research Inst., Huazhong Univ. of Science and Technology, China. An UWFBG array containing 1000 UWFBGs spaced 10cm apart by time and wavelength division multiplexing was fabricated in UV-transparent coating optical fiber. The temperature sensing precision is around 0.1 under 1pm wavelength measuring accuracy.	
W3G.4 • 15:00 Wavelength-Parallel Photonic Tensor Core Based on Multi-FSR Microring Resonator Crossbar Array, Xian Xiao', Stanley Cheung', Sean Hooten', Yiwei Peng', Bassem Tossoun', Thomas Van Vaerenbergh', Geza Kurczveil', Raymond Beausoleil'; 'Hewlett Packard Enterprise, USA. This paper proposes a wavelength-parallel photonic tensor core by exploiting multiple free spectral ranges (multi-FSRs) of the microring resonator crossbar array architecture. As an example, a four-FSR 4×4 crossbar array is designed and simulated.	informed opucal path switching before link lailure.	W3I.5 • 15:00 Chaotic-Cavity Surface-Emitting Lasers for Opti- cal Wireless Communication, Omar Alkhazragi ¹ , Ming Dong ¹ , Liang Chen ¹ , Dong Liang ² , Tien Khee Ng ¹ , Junping Zhang ² , Hakan Bagci ¹ , Boon S. Ooi ¹ ; 'King Abdullah Univ. of Sci. & Technology, Saudi Arabia; ² Huawei Technologies Co., Ltd., China. We demonstrated using chaotic cavities to lower the spatial coherence of vertical-cavity surface-emitting lasers. Our design achieved a 10-Gb/s data rate with a 60% increase in the optical power and double the number of modes.	W3J.5 • 15:00 Simultaneous Measurement of Temperature and Strain With Enhanced Accuracy by Using Forward Brillouin Scattering in Highly Nonlinear Fiber, Guijiang Yang', Keyan Zeng', Liang Wang', Ming Tang', Deming Liu'; 'Huazhong Univ. of Sci. & Tech., China. Simultaneous temperature and strain sensing has been demonstrated for the first time by using forward Brillouin scattering in highly nonlinear fiber. The accuracy is improved by seven times compared with that using backward Brillouin scattering.	
		OFC 2023 • 05–09 March 2023		-

Room 1AB	Room 2	Room 3	Room 6C	Room 6D	Room 6E
W3A • Symposium: Beyond the Hype of Network Analytics: Use Cases, Feasibility and Barriers I— Continued	W3B • Special Session: Photonics for Visible Wavelengths II—Continued	W3C • Devices for Quantum Technologies (Joint D5/ SCQ)—Continued	W3D • Modulators and Transceivers—Continued	W3E • Transmission Impairment Mitigation and Compensation Techniques— Continued	W3F • Convergent Optical Access for Mobile Connectivity—Continued
W3A.5 • 15:20 Invited Analytics for Next-Gen Network Planning, Jian Kong'; <i>'Microsoft Corp, USA</i> . Abstract not available.	W3B.5 • 15:20 Invited Heterogeneous Integration for Visible Light PIC, Brian Corbett'; 'Tyndall National Inst., Ireland. Abstract not available.	W3C.5 • 15:15 Modulator-Free Intensity- and Phase- Modulated Optical Transmitter for Quantum Communications, Robert I. Woodward', Yuen San Lo ^{1,2} , Nathan Walk', Marco Lucamarini', Innocenzo De Marco', Taofiq Paraiso', Mirko Pittaluga', Thomas Roger', Mirko Sanzaro', Zhiliang Yuan', Andrew Shields'; 'Toshiba Europe Ltd., UK; 'Quantum Science & Technol- ogy Inst., UCL, UK. We demonstrate a simplified optical transmitter design for generating intensity- and phase-modulated pulses, using injection locking and pulse interference. The transmitter is applied for proof-of-principle quantum key distribution, achieving Mbps secure bit rates.	W3D.5 • 15:15 Highly Optimized O-Band Si Ring Modula- tors for Low-Power Hybrid CMOS-SiPho Transceivers, Yoojin Ban', Minkyu Kim', Peter De Heyn', Davide Guermandi', Filippo Ferraro', Natarajan Rajasekaran', Peter Verheyen', Pieter Bex', Junwen He', Hakim Kobbi', Jeroen De Coster', Rafal Magdziak', Dieter Bode', Sebastien Larde- nois', Nicolas Pantano', Dimitrios Velenis', Joris Van Campenhout'; <i>timec, Belgium.</i> We present O-band Si ring modulators with up to S8pm/V electro-optic and 610pm/mW thermo-optic modulation efficiencies and >24GHz modulation bandwidth, enabling a hybrid CMOS-SiPho transceiver with error-free operation at 40Gbps NRZ with <4pJ/bit link energy	W3E.5 • 15:15 Experimental Demonstration of a Sim- plified SOA Nonlinearity Mitigation Scheme, Eric Sillekens ¹ , Filipe Ferreira ¹ , Robert I. Killey ¹ , Polina Bayvel ¹ ; 'Univ. College London - Dpt E&EE, UK. We experimentally demonstrated a digital learned-filter mitigation scheme for semiconductor optical amplifier-induced nonlinear distortion of single-polarisation 32 GBd 16QAM and 64QAM signals in a back-to-back configuration.	W3F.5 • 15:15 New Photonic Gateway to Handle Digital- Coherent and IM-DD User Terminals and Enable Turn-Back Connections in Metro/ Access-Integrated All-Photonics Network, Manabu Yoshino ¹ , Shin Kaneko ¹ , Naotaka Shibata ¹ , Ryo Igarashi ¹ , Jun-ichi Kani ¹ , To- moaki Yoshida ¹ ; 'NTT Corporation, Japan. We propose and demonstrate a novel Photonic Gateway architecture that can flexibly and scalably handle both 100-Gbit/s digital-coherent and IM-DD user terminals with direct optical connections including turn-back channels.
		W3C.6 • 15:30 Invited Interference Beyond the Coherence by Using Classical Light, Yoon-Ho Kim'; 'Po- hang Univ of Science & Technology, Korea (the Republic of). The intensity correlation between the outputs of two unbalanced Mach-Zehnder interferometers with two classically correlated beams of thermal light at the input exhibits genuine second-order interference beyond the coherence length of the thermal light.	W3D.6 • 15:30 Invited Monolithically Integrated InP-Based Transceiver Photonic ICs for 800G Solu- tions, Vikrant La ¹ , 'Infinera Corporation, USA. Abstract not available.	W3E.6 • 15:30 Inline Optical Compensation of Group Delay Ripple for Long-Haul Transmission Using Offloaded 2×2 MIMO Filter, Masaki Sato', Manabu Arikawa', Hldemi Noguchi', Junichiro Matsui², Jun'ichi Abe', Emmanuel Le Taillandier de Gabory'; 'NEC Corpora- tion, Japan; ²NEC Corporation, Japan. We demonstrated inline optical compensation of group delay ripple estimated with offloaded 2×2 MIMO filter for 84-GBaud PM-PCS-16QAM over 10,200 km SMF. We showed 38 % reduction of MIMO taps, compared to the conventional method. W3E.7 • 15:45	W3F.6 • 15:30 InviteD DSP-Enhanced Radio-Over-Fiber Xhaul Networks Toward Beyond-5G, Paikun Zhu', Yuki Yoshida', Atsushi Kanno ^{2,1} , Kouichi Akahane', Ken-ichi Kitayama ^{3,1} ; 'National Inst of Information & Comm Tech (NICT), Japan; 'Nagoya Inst. of Technology, Japan; 'Hamamatsu Photonics Central Re- search Laboratory, Japan. We review recent progress on candidate DSP-enhanced radio-over-fiber techniques for Xhaul networks targeting 5G and beyond. Low- latency real-time link and layer-2 networking demonstrations will be discussed.
				New Mode-Group-Permutation Strate- gies for MDL Reduction in Long-Haul MDM Systems, Huihui Wang ¹ , Xutao Wang ¹ , Yichen He ¹ , Zhiqun Yang ¹ , Yaping Liu ¹ , Qiang Guo ³ , Rui Zhou ³ , Xinhua Xiao ³ , Zhanghuo Huang ¹ , Liu Zhang ¹ ,	

16:00–16:30 Coffee Beak, Upper Level Corridors and Exhibit Hall

Zhanhua Huang¹, Lin Zhang¹², ¹⁷ianjin Univ, China; ²Peng Cheng Laboratory, China; ³Huawei Technologies Co., Ltd., China. We compare 9 types of mode-permutation strategies (MPSs) aiming at MDL reduction in MDM systems, based on in-house low-DMD 6-mode optical fibers and MPLCs. Two new CMGP strategies are proposed, showing reach extension by 3–3.5 times.

Room 6F	Room 7AB	Room 8	Room 9	Show Floor Programming
W3G • Photonic Processing for Computing and ML—Continued	W3H • Coherent Pluggables and Field Trials—Continued	W3I • Enabling Technology for Free Space Optical Communications— Continued	W3J • Sensing, Devices and OTDR—Continued	SF9 • FBA: The State of Fiber in America 14:15–15:15, Theater II
W3G.5 • 15:15 A Modified Mesh With Individually Monitored Interferometers for Fast Programmable Optical Processors, Hassan R. Mojaver ¹ , Bokun Zhao ¹ , Odile Liboiron-Ladouceur ¹ ; ¹ McGill Univ., Canada. We demonstrate a novel mesh of interferometers for programmable optical processors. Employing an efficient programming scheme, the proposed architecture improves energy efficiency by 83% maintaining the same computation accuracy for weight matrix changes at 2 kHz.	W3H.5 • 15:15 Invited Deployment Results of Super C(120)+L(100) Long-Haul Optical Transmission System With Fast Distributed Fault Recovery, Chen Zhu', Xu Zhou', Shengnan Li'; 'Baidu Inc., China. We discuss the hardware, architect and system control of a C+L long-haul transmission link with 11THz total bandwidth. We show that a hierarchy fast distributed fault recovery mechanism is critical for the successful system deployment.	W3I.6 • 15:15 Next Generation Wireless Fronthaul Using VCSEL- Based Free Space Optics, Tongyun Li', Wajahat Ali', Rui Chen', Yi Liu', Michael Crisp', Richard Penty'; 'Electrical Division, Engineering Department, Unix of Cambridge, UK. A free-space optic, (FSO) based fronthaul final drop is proposed; enabling cost- effective remote unit deployment. Experimental results show >45dB RF dynamic range and an EVM of 1.1% for a 2x20MHz 64QAM RF signal.	W3J.6 • 15:15 Fast BOTDA Acquiring Method Based on Broad- band Light as a Probe Signal, Takahiro Ishimaru ¹ , Yoshifumi Wakisaka ¹ , Hiroshi Takahashi ¹ , Daisuke Lida ¹ , Yusuke Koshikiya ¹ ; ¹ NTT corporation, Japan. We propose a fast BOTDA-based large dynamic strain measurement technique with a broadband ASE probe light. We demonstrate the distributed measurement of 25 Hz vibration with the 380 με amplitude.	MW4 • MW Panel IV: Performance-Centric Long Haul 14:45–16:15, Theater I Bringing Order to Chaos – OIF – Part 1 15:00–15:30, Theater III Bringing Order to Chaos – OIF – Part 2 Presented by OIF 15:30–16:00, Theater III
W3G.6 • 15:30 Invited VCSEL Based Neuromorphic Computing, Antonio Hurtado', Dafydd Owen-Newns', Matej Hejda', Josh- ua Robertson'; 'Univ. of Strathclyde, UK. We report on Vertical-Cavity Surface-Emitting Lasers (VCSELs) for high-speed and energy-efficiency systems for photonic neuromorphic computing, yielding excellent performance in complex processing tasks whilst benefitting from hardware-friendly implementations and full compatibility with optical communication technologies.	W3H.6 • 15:45 Service Margins for Wide-Band Optical Spectrum Services Implemented In Long-Haul Raman-Enabled Networks, Kaida Kaevall ¹² , Sai Kireet Patri ¹ , José- Juan Pedreño-Manresa ¹ , Klaus Grobe ¹ , Joerg-Peter Elbers ¹ , Helmut Griesser ¹ , Marko Tikas ² , Gert Jervan ² ;	W31.7 • 15:30 Mitigation of Atmospheric Turbulence in an Opti- cal Free Space Link With an Integrated Photonic Processor, Francesco Morichetti', Gabriele Cavic- chioli', Andres Martinez', Seyedmohammad Seyedin- navadeh', Francesco Zanetto', Christian Mazzucco', Michele Re ² , Maurizio Mattivi ² , Filippo Morandi', Ales- sandro D'Acierno', Umberto Spagnolini', Andrea Mel- loni'; 'Dipartimento di elettronica informazione e bio- ingegneria, Politecnico di Milano, Italy; 'Huawei Tech- nologies Italia, Italy. Mitigation of turbulence in a Free Space Optical communication link is demonstrated using an integrated programmable optical processor. 10Gbit/s OOK signals are successfully transmitted on an indoor setup emulating hundreds of meters link.	W3J.7 • 15:30 Invited Integrated Antenna Modules for Photonic RF Sensing and Communications, Rod Waterhouse ¹ , Dalma Novak ² ; 'Octane Wireless, USA. In this paper we present some recent advancements in antenna/ photonic device integration for radio? over fiber applications. In our direct integration investigations we divide our approach based on frequency bands; below 6 GHz and above 26 GHz (Ka-band) to be consistent with such applications as present day 5G and 5G+ systems.	SF10 • Broadband Forum: Technologies and Focus to Add Value to the Goal of a Single Multi-Access Optical PON Network 15:30–16:30, <i>Theater II</i>
	¹ ADVA Optical Networking, Germany; ² TalTech, Estonia; ³ Tele2 Estonia, Estonia. Operators depend on reliable Q-margin estimates to reliably operate wide-band Optical Spectrum Services. We use long- term performance tracking in a live Raman-enabled links to derive service margins for a 375-GHz Optical Spectrum Service. © 2021 The Author(s).	er Level Corridors and Exhibit Hall		

Room 1AB

16:30-18:30

Canada

W4A • Symposium: Beyond the Hype of Network Analytics: Use Cases, Feasibility and Barriers II Presider: Paolo Monti; Chalmers Univ. of Technology, Sweden and Christine Tremblay; École de technologie supérieure,

W4A.1 • 16:30 Invited

Brazil. Abstract not available.

W4A.2 • 16:50 Invited

Abstract not available.

Combining Machine Learning and Analyti-

cal Models, Jelena Pesic¹; ¹Nokia, France.

When Digital Twins Meet Optical Net-

works Operations, Darli Mello¹: ¹UNICAMP.

16:30-18:30 W4B • Lasers and CPO

Room 2

Presider: Molly Piels; OpenLight, USA

Room 3

W4C • Advanced Optical

Presider: Peter Andrekson:

Chalmers Tekniska Högskola,

16:30-18:30

Technologies

Sweden

W4C.2 • 17:00

modulation.

Direct Electrostriction Measurement

Using SPM for Fiber Type Identification,

Fatima Al-Shaikhli¹, Maurice O'Sullivan²,

Rongging Hui1; 1Univ. of Kansas, USA;

²Ciena, Canada. We present a simple

technique for in-field determination of

fiber types through the measurement of

electrostriction effect based on self-phase

Room 6C

16:30-18:15 W4D • Hollow Core Fiber Presider: Georg Rademacher; National Inst of Information &

16:30-18:30 W4E • Direct Detection and Short Reach Transmission Comm Tech, Japan

Systems Presider: Hussam Batshon; Nokia Bell Labs, USA

Room 6D

Room 6E

16:30-18:30 W4F • Converged Fixed and Mobile Networks Presider: Frank Effenberger; FutureWei Technologies Inc, USA

W4B.1 • 16:30

8-Channel CWDM TOSA for CPO External Laser Sources Employing a Blind Mate Connector, Taketsugu Sawamura¹, Kyoko Nagai¹, Kazuhiko Kashima¹, Kohei Umeta¹, Daiki Takeda¹, Tsunetoshi Saito¹, Hideyuki Nasu¹; ¹Telecommunication & Energy Laboratories, Furukawa Electric Co., Ltd, Japan. We report an 8-channel CWDM TOSA designed for CPO ELS modules adopted with a blind mate optical connector. The mechanical size of the TOSA is as small as 22.5 mm × 13.0 mm × 4.0 mm to be built in a standard QSFP housing. The fibercoupled power is >20 dBm, PER is >20 dB for all channels over the case temperature range of 25 °C to 55 °C.

W4B.2 • 16:45 Invited

Solving the Escape Density Problem: Making Connections Count With SCIP, Rebecca K. Schaevitz¹, Karl Muth¹, Ying Luo¹, Vivek Raghuraman¹, Near Margalit¹; ¹Broadcom Corporation, USA. Silicon Photonics Chiplets in Package (SCIP) creates a paradium shift, enabling escape densities in optics that match the core silicon and creating a scalable platform that meets requirements of future data center and compute architectures.

W4C.1 • 16:30 Invited

Fabrication of Multicore Fibers for High Power Lasers, Sensing, and Communications, Nicoletta Haarlammert¹, Johannes Nold¹, Stefan Kuhn¹, Christian Hupel¹, Sigrun Hein¹, Arno Klenke^{2,3}, Cesar Jaurequi², Jens Limpert^{1,2}, Thomas Schreiber¹, Andreas Tünnermann^{1,2}; ¹Fraunhofer IOF, Germany; ²Inst. of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität, Germany; ³Helmholtz-Inst. Jena, Germany. Many fiber applications require novel fiber concepts to overcome existing limitations. The advantages of multicore fibers as a promising fiber concept for fiber lasers, sensing and communications are discussed. Different fabrication technologies are presented

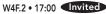
Birefringent and Low Loss Semi-Tube Hollow-Core Fiber, Yingying Wang¹, Yifeng Honq¹, Shoufei Gao¹, Xiaosong Lu¹, Zhe Zhang¹, Wei Ding¹; ¹Inst. of Photonics Technology, Jinan Univ., China. We summarize our recent work on design, fabrication and characterization of birefringent, low loss and broadband semi-tube hollow-core anti-resonant fiber. We also show its low loss interconnection with panda fiber.

W4D.1 • 16:30 Invited

W4E.1 • 16:30 Invited

Spiking Neural Network Linear Equalization: Experimental Demonstration of 2km 100Gb/s IM/DD PAM4 Optical Transmission, Georg Böcherer¹, Florian Strasser¹, Elias Arnold², Youxi Lin¹, Johannes Schemmel², Stefano Calabrò¹, Maxim Kuschnerov¹; ¹Huawei Technologies Duesseldorf GmbH. Germany: ²Heidelberg Univ., Germany. A linear feed-forward equalizer is implemented by a potentially low-power spiking neural network. For a 100Gb/s PAM-4 IM/DD optical 2km transmission, no performance penalty compared to a digital implementation is observed.

W4F.1 • 16:30 Invited


Inter-Channel FWM Mitigation Techniques for O-Band WDM Based 800G/1.6T LR and 5G Fronthaul Applications, Xiang Liu¹, Qirui Fan1; ¹Huawei Hong Kong Research Center, Hong Kong. We review recent advances in the mitigation of inter-channel four-wave-mixing (FWM) based on the "XYYX" input polarization alignment and unequal channel spacing to enable highperformance O-band WDM transmission for 800G-LR4, 1.6T-LR8 and bidirectional 5G fronthaul.

W4D.2 • 17:00 Top-Scored

Longitudinal Non-Destructive Characterization of Nested Antiresonant Nodeless Fiber Microstructure Geometry and Twist, Leonard Budd¹, Austin Taranta¹, Eric Numkam Fokoua¹, Francesco Poletti¹; ¹ORC, UK, We demonstrate non-destructive measurement of nested antiresonant nodeless fiber (NANF) microstructure along 2.2 km of fiber using a side-scattering method. Additionally, using the same technique, we demonstrate measurement of twisting in NANF.

W4E.2 • 17:00

Demonstration of Real-Time Receiver for 30-GBaud PAM-6 Signal in IM/DD System, Shenmao Zhanq¹, Xiaoxiao Dai¹, Zhuo Chen¹, Qi Yang¹, Chen Liu¹, Lei Deng¹, Mengfan Cheng¹, Deming Liu¹; ¹Huazhong Univ. of Science and Technology, China. Using baud-rate timing recovery algorithm and a simple blind synchronization method, we experimentally demonstrate a realtime reception of 30-GBaud 6-level pulse amplitude modulation (PAM-6) signal with a baud-rate analog-to-digital converter (ADC).

Optical Networks and Edge Computing, David Piehler¹, Raja Jayakumar¹; ¹Dell Technologies, USA. Explosive growth in the number of edge devices highlights the need for distributed compute resources in the data path from edge to the network core. We discuss new applications that bring the need for lower latency, higher bandwidth, autonomous operation, and reduced overall cost compared to the (centralized) cloud computing model, as well as the evolving optical interconnection options that make effective solutions feasible.

Room 6F	Room 7AB	Room 8	Room 9	Room 4	Show Floor Programming
16:30–18:30 W4G • Machine Learning for Estimation and Forecasting Presider: Christine Tremblay; École de technologie supérieure, Canada	16:30–18:30 W4H • Transmission Systems and Modelling Presider: To be announced.	16:30–18:30 W4I • Open Networking Summit: Top to Bottom: Practical Approaches to Openness, Disaggregation, and Reaggregation in Optical Communication	16:30–18:30 W4J • Hybrid Communication/Sensing Systems Presider: Oskars Ozolins; RISE Research Inst.s of Sweden AB, Sweden	16:30–18:15 W4K • Quantum Networks Presider: Gregory Kanter; NuCrypt, USA	SF10 • Broadband Forum: Technologies and Focus to Add Value to the Goal of a Single Multi-Access Optical PON Network 15:30–16:30, Theater II
		Organizers: Yawei Yin, Microsoft, USA; Jim Zou, ADVA, Germany; Dan Pitt, Palo Alto Innovation Advisors, USA			
W4G.1 • 16:30 CompOoTE: Generalizing OoT Estimation With Composable ML and End-to-End Learning, Hanyu Gao', Xiaoliang Chen', Lu Sun², Zhaohui Li'; 'Sun Yat-sen Univ, China; ² State Grid Information & Telecom- munication Group Co., Ltd., China. This paper proposes CompOoTE, a composable QoT estimation design with end-to-end learning capability. Results show CompOoT can generalize arbitrary lightpaths while achieving >90% estimation accuracy for unseen lightpaths.	W4H.1 • 16:30 Invited Complexity Versus Accuracy Tradeoffs in Nonlinear Propagation Models, Ga- briella Bosco ¹ ; 'Politecnico di Torino, Italy. Some of the most widespread analytical models for nonlinear propagation in fiber optic coherent systems are reviewed, highlighting the tradeoffs between accuracy and complexity in different transmission scenarios, including wide-band optical systems and short-reach links.	Speakers: Óscar González de Dios, Tele- fónica I+D, Spain; Stephan Neidlinger, ADVA, Germany; Guohan Lu, Microsoft, USA; David Gomez, X-Celeprint, USA; Tino Jaeger, X-FAB. Germany Description: As we look at the success of the "Open" and "Disaggregated" systems in data centers, it is not difficult to draw a few fundamental conclusions: #1, servers came easiest because of standardized processing units, whether it's x86-based CPU, GPU, or Arm processors, running in Linux-based white-box servers, which have become the norm for even the branded server vendors; #2, the standard interfaces that can connect servers together, i.e., the Ethernet-based NIC card and the BGP/	W4J.1 • 16:30 Invited Photonic-Wireless Communication and Sensing in the Terahertz Band, Xianbin Yu ¹ , Hongqi Zhang ¹ , Zuomin Yang ¹ , zhidong Lyu ¹ , Hang Yang ¹ , Yuqian He ¹ , Siqi Liu ¹ , Nan Li ¹ , Oskars Ozolins ² , Xiaodan Pang ² , Lu Zhang ¹ , Xianmin Zhang ¹ ; 'Zhejiang Unix, China; ² KTH Royal Inst. of Technology, Sweden. This paper reviews the potential of THz photonics in communication and sensing bypresenting our experimental results in the 300-500 GHz. Benefiting from the large availablebandwidth in both THz and photonics, THz communications with high speed and THz imagingwith high resolution have been achieved.	W4K.1 • 16:30 Invited Deployed OKD Networks in Europe, Hannes Hübel ¹ , Florian Kutschera ¹ , Martin Achleitner ¹ , Christoph Pacher ¹ , Werner Strasser ² , Francesco Vedovato ³ , Edoardo Rossi ³ , Francesco Picciariello ³ , Giuseppe Vallone ³ , Paolo Villoresi ³ , Luca Calderaro ⁴ , Vicente Martin ⁵ , Juan P. Brito ⁵ , Laura Or- tiz ⁵ , Diego Lopez ⁴ , Antonio Pastor ⁴ , Marc Geitz ⁷ , Ralf-Peter Brau ⁷ , Piotr Rydli- chowski ⁸ ; ¹ AIT Austrian Inst. of Technology, Austria; ² fragmentiX Storage Solutions GmbH, Austria; ³ Dipartimento di Ingegneria dell'Informazione, Universita degli Studi di Padova, Italy; ⁴ ThinkQuantum srl, Italy; ⁸ Center for Computational Simulation and ETSI Informáticos, Univ. Politécnica de Madrid, Spain; [*] Telefonica 1+D, Spain;	
W4G.2 • 16:45 QoT Violation in Low-Margin Optical Networks, Pooyan Safari', Behnam Shari- ati', Wanda Baltzer', Johannes Karl Fischer'; 'Fraunhofer HHI, Germany. We approach the QoT estimation problem from a novel perspective revealing the hidden aspects of QoT violation avoidance procedure during lightpath provisioning and quantify the potential complexity when applied to low-margin networks.		TCP/IP protocol stack that enable the communication, and the appearance of Linux-based white-box switches have not yet resulted in their proliferation beyond the hyperscale realm because of the strength of incumbent brands and the challenges of integrating and supporting disaggregated components, and #3, the optical links, while disaggregated to the pluggable level with standardized interfaces, cannot match the density and scale of the computing world. Moreover, DSP algorithms are still being		Madrid, Spain; "Fereincia FPD, Spain; "T-Labs, Germany; "Poznan Supercomput- ing and Networking Center, Poland. We report several use-case demonstrations for quantum key distribution in deployed fiber networks. The tests were carried out under real world conditions at the end-user premises using commercial QKD systems.	
W4G.3 • 17:00 Invited Machine-Learning-as-a-Service for Optical Network Automation, Carlos Natalino da Silva ¹ Nasser Mohammadiha ²¹ Ashkan	W4H.2 • 17:00 Long-Haul Transmission of 1-Tb/s Data Rate Channel With Inline Filtering Based on 145-GBd Dual Polarization 16QAM,	treated as "secret sauce," and advanced modulation schema is not connecting different light sources together. Finally, silicon photonics and III-V semiconductors	W4J.2 • 17:00 Photonics-Assisted Joint Radar and Communication System in W Band Using Electromagnetic Polarization Multiplex-	W4K.2 • 17:00 Multi-User Entanglement Routing in Quantum Mesh Networks, Evan Sutcliffe ¹ , Matty J. Hoban ² , Alejandra L. Beghelli ¹ ;	

Network Automation, Carlos Natalino da Silva¹, Nasser Mohammadiha^{2,1}, Ashkan Panahi¹; ¹Chalmers Tekniska Högskola, Sweden; ²Ericsson AB, Sweden. MLaaS is introduced in the context of optical networks, and an architecture to take advantage of its potential is proposed. A use case of QoT classification using MLaaS techniques is benchmarked against stateof-the-art methods. Rate Channel With Inline Filtering Based on 145-GBd Dual Polarization 160AM, Sylvain Almonacil¹, Yang Hong¹, Haik Mardoyan¹, Xiaoyan Ye¹, Amirhossein Ghazisaeid¹, Jérémie Renaudier¹; ¹Nokia Bell Labs, France. We demonstrate Tb-class long-haul experiment based on 145-GBd signal occupying one 150-GHz slot. We achieve 1.0-Tb/s/A over 3630-km distance with a spectral efficiency of 6.67-b/s/Hz while accounting for inline filtering from ROADM in transport networks.

> in DSP algorithms, and manufacturable heterogeneous-integration technologies. Join us to hear from and debate with the experts leading these innovations.

wireless rate have reached a record of 15

mm and 92 Gbit/s, respectively.

Electromagnetic Polarization Multiplex-Matty J. Hoban², Alejandra L. Beghelli¹; ing, Mingzheng Lei¹, Yuancheng Cai^{1,2}, ¹UCL, UK; ²Cambridge Quantum Comput-Jiao Zhang^{1,2}, Bingchang Hua¹, Yucong ing Ltd, UK. Multipath routing for sharing Zou¹, Wei Luo², Miaomiao Fang², Shitong entanglement between multiple devices Xiang², Jianjun Yu^{1,3}, Min Zhu^{1,2}; ¹Purple was simulated on real network topologies Mountain Labs, China; ²Southeast Univ., and compared against single-path routing. China; ³Fudan Univ., China. We proposed Results show improved entanglement rates, and demonstrated a photonics-assisted especially for topologies with a higher joint radar and communication system in average nodal degree. W band using electromagnetic polarization multiplexing. The spatial resolution and

101

Wednesday, 8 March

OFC 2023 • 05–09 March 2023

remain silos not amenable to the integration

density required for a wide-open market in

co-packaged optics and the eye-popping

applications in consumer, health, and

civic technologies. In this session, we will

paint a "coherent" portrait of advancing

openness, manageable disaggregation,

and heterogeneous integration and reag-

gregation in optical communication. We will

look at the progress in open-source network

operating systems, open-source coherent

optical light sources, industry standards

Room 1AB	Room 2	Room 3	Room 6C	Room 6D	Room 6E
W4A • Symposium: Beyond the Hype of Network Analytics: Use Cases, Feasibility and Barriers II— Continued	W4B • Lasers and CPO— Continued	W4C • Advanced Optical Technologies—Continued	W4D • Hollow Core Fiber— Continued	W4E • Direct Detection and Short Reach Transmission Systems—Continued	W4F • Converged Fixed and Mobile Networks— Continued
W4A.3 • 17:10 Invited Is Intelligence the Answer to Deal With the 5 v's of Telemetry Data?, Luis Velasco'; 'Universitat Politecnica de Catalunya, Spain. Abstract not available.	W4B.3 • 17:15 16-ch 1060-nm Single-Mode Bottom- Emitting Metal-Aperture VCSEL Array for Co-Packaged Optics, Liang Dong ¹ , Xiaodong Gu ¹² , Fumio Koyama ¹ , 'Tokyo Inst. of Technology, Japan; ² Ambition Pho- tonics Inc., Japan. We demonstrate 16-ch 1060-nm bottom-emitting metal-aperture VCSEL array for co-packaged optics transceivers. The transverse-control and bandwidth-enhancement is realized thanks to coupled cavity. A record bandwidth and fiber distance product of 250Gbps•km is obtained.	W4C.3 • 17:15 Broadband and Fine-Resolution Micro- wave Photonic Filtering With High-Speed Electronic Reconfigurability, Xinyi Zhu ¹ , Benjamin Crockett ¹ , Connor M. Rowe ¹ , Jose Azaña ¹ ; 'INRS-EMT, Canada. We experimentally demonstrate electronically programmable, user-defined time-varying frequency filtering of continuous broadband signals, over a 22 GHz frequency tuning range and with >1 GHz reconfiguration speed, using electro-optic modulation of a reversible time-mapped spectrogram.	W4D.3 • 17:15 A Method to Compute the Local Bire- fringence Vector in Twisted and Bent An- tiresonant Hollow-Core Fibers., Gianluca Guerra', Seyed Mohammad Abokhamis Mousavi', Austin Taranta', Eric Numkam Fokoua', Marco Santagiustina ² , Andrea Gal- tarossa ² , Francesco Poletti', Luca Palmien ² , 'Optoelectronics Research Centre, Univ. of Southampton, UK; ² Univ. of Padova, Italy. This work proposes a technique to elucidate mode coupling when antiresonant fibers are twisted and bent.From this, we show how the birefringence of a nested antiresonant nodeless fiber changes as function of the deployment.	W4E.3 • 17:15 Dispersion Compensation Over C-Band WDM Grid for 100Gb/s PAMA System by Low-Complexity Optoelectronic Feedfor- ward Equalization (OE-FFE), Paikun Zhu', Yuki Yoshida', Atsushi Kanno ^{2,1} , Kouichi Aka- hane', Ken-ichi Kitayama ^{3,1} ; 'National Inst of Information & Comm Tech (NICT), Japan; ² Nagoya Inst. of Technology, Japan; ³ Hama- matsu Photonics Central Research Labora- tory, Japan. We experimentally investigate OE-FFE-enabled C-band 100Gb/s/λ PAM4 transmission over 50km with different carrier frequencies and linewidths. 3.8-THz range on ITU-T G.694.1 grid is supported with a single 1-tap optical delay line and ≤32-tap digital FFE.	
W4A.4 • 17:30 Invited Industry Leading Work in Telescent, Bob Shine, <i>Telescent, USA</i> . Abstract not available.	W4B.4 • 17:30 A 66-GHz Lumped-EML Submodule Using Resistance-Optimized LC Resonance With Low Temperature Dependence of 3-dB Bandwidth, Seokjun Yun', Youngtak Han', Donghun Lee', Donghyo Lee', Seoktae Kim ² , Janguk Shin', Sangho Park', Seoyoung Lee', Yongsoon Baek'; <i>Photonics/Wireless Devices Research Division, ETR, Korea (the Republic of); ²Luvantix ADM, Korea (the Republic of); ²Luvantix ADM, Korea (the Republic of): We report on a lumped-EML submodule with 3-dB bandwidths of 68.2 GHz at 25°C and ~66 GHz at 70°C using a resistance-optimized LC resonance effect, showing low temperature dependence and making it suitable for 112-Gbaud operation.</i>	W4C.4 • 17:30 Nonlinear Tolerant Conjugated RoF Sys- tem Secured by Physical Layer Encryption With Deliberate Signal Randomization, Tatsuki Ishijima', Shuhei Otsuka', Shun Harada', Takahide Sakamoto', Ken Tani- zawa ² , Fumio Futami ² ; ¹ Tokyo Metropolitan Univ, Japar; ² Quantum ICT Research Inst., Tamagawa Univ, Japan. We propose and demonstrate conjugated RoF (C-RoF) secured by physical layer encryption with deliberate signal randomization, for high- RF-link-gain and high-security analog RoF transmission. 19.4-dBm high-power secured C-RoF-QPSK is experimentally achieved with improved fiber nonlinearity tolerance.	W4D.4 • 17:30 Near-Zero Radiation Induced Attenua- tion in Nested Anti-Resonant Nodeless Hollow-Core Fibers at 1550 nm, Sacha Medaer ^{1,2} , Diego Di Francesca ¹ , Eric Num- kam Fokoua ³ , Francesco Poletti ³ , Daniel Ricci ¹ , Bernhard Schmauss ² , Austin Taranta ³ , Iacopo Toccafondo ¹ ; ¹ CERN, Switzerland; ² Friedrich-Alexander Univ., Germany; ³ Optoelectronics Research Centre, UK. The first nested anti-resonant hollow-core fiber radiation study is reported. A record near-zero radiation induced attenuation is observed under γ-rays and X-rays. These results open new possibilities for fiber-based applications in radiation environments.	W4E.4 • 17:30 Comparison Between PAM and DMT in a 200-Gb/s IM-DD System Considering the Interaction Between Bandwidth Limit and Peak Power Constraint at Transmitter, Di Che ¹ ; 'Nokia Bell Labs, USA. We revisit the PAM vs DMT debate in a 200G-class IM-DD system. We study the interaction between bandwidth limit and peak power constraint in an IM transmitter with peak distortion, and involve DSP techniques like faster than Nyquist and entropy loading for a more comprehensive achievable information rate comparison.	W4F.3 • 17:30 Top-Scored Picosecond-Precision Clock Synchronized Radio Access Networks Using Optical Clock Distribution and Clock Phase Caching, Kari Clark', Zichuan Zhou', Zhixin Liu'; 'Univ. College London, UK. We show 0.98-ps precision clock synchronization for radio access networks, in a real-time field- trial demonstration on 37.6-km dark fiber, with optical clock frequency synchronization and clock phase caching operating using 25.6-Gb/s commercial transceivers.

Room 6F	Room 7AB	Room 8	Room 9	Room 4
W4G • Machine Learning for Estimation and Forecasting—Continued	W4H • Transmission Systems and Modelling—Continued	W41 • Open Networking Summit: Top to Bottom: Practical Approaches to Openness, Disaggregation, and Reaggregation in Optical Communication— Continued	W4J • Hybrid Communication/Sensing Systems—Continued	W4K • Quantum Networks— Continued
	W4H.3 • 17:15 Top-Scored 241.92-Bit/s/Hz Spectral-Efficiency Trans- mission Over 14-km 7-Core Ring Core Fiber With Low-Complexity 4X4 MIMO Equalization, Zengquan Xu', Junyi Liu', Jie Liu', Zhenrui Lin', Junwei Zhang', Zhenhua Li', Lei Shen², Siyuan Yu'; 'Sun Yat-sen Univ, China; ² State Key Laboratory of Optical Fiber and Cable Manufacture Technology, China. The transmission of 84 OAM modes with spectral efficiency of 241.92 bit/s/Hz over 14 km 7-core ring core fiber whose cladding diameter is 180µm is demonstrated, using 4 × 4 MIMO equalizations.		W4J.3 • 17:15 An Integrated Radar Detection and Microwave Frequency Measurement System Based on an Optically Injected Semiconductor Laser, Zhigang Tang', Pei Zhou', Jian Zhu', Nianqiang Li', Shilong Pan ² ; 'Soochow Univ., China; ² Nanjing Univ. of Aeronautics and Astronautics, China. An integrated radar detection and microwave frequency measurement system has been proposed and experimentally demonstrated based on an optically injected semiconductor laser. Both high- resolution radar detection and accurate microwave frequency measurement are realized simultaneously.	W4K.3 • 17:15 Optimum Switching Scenario Analysis i a Dynamic Entanglement Network, Ru Wang', Marcus Clark ¹ , Siddarth Koduru K Joshi ¹ , Sima Bahrani ¹ , Obada Alia ¹ , Mate Perani ⁶² , Martin Lončarić ² , Mario Stipčević John Rarity ¹ , Reza Nejabati ¹ , Dimitra E Simeonidou ¹ ; ¹ Unix. of Bristol, UK; ² Institu. Ruder Bošković, Croatia. We investigate th performance of a dynamical entanglement based QKD network with various switching scenarios. The simulation results suggee the optimum scenario for different heralding efficiencies and detectors' jitter and th experimental results verify the benefit.
W4G.4 • 17:30 LSTM Assisted Optical Transmission Performance Analysis Over a 493-km Field-Trial, Sen Shen ¹ , Ruizhi Yang ¹ , Hai- yuan Li ¹ , Ziming Shi ¹ , Rui Wang ¹ , Reza Nejabati ¹ , Shuangyi Yan ¹ , Dimitra E. Sime- onidou ¹ ; 'HPN, UK. We implement an LSTM-based algorithm to predict and analyse transmission performance and detect anomalies. Cross-validation of the model over two experimental datasets shows high precision of up to 96\% for R2 to predict short-term variations.	W4H.4 • 17:30 Digital Twin of Unrepeatered Line Based on Raman and Remote Optically Pumped Amplifier Machine Learning Models, Ar- thur Minakhmetov ¹ , Benjamin Prieur ¹ , Maël Le Monnier ¹ , Delphine Rouvillain ¹ , Bruno Lavigne ¹ ; ¹ Alcatel Submarine Networks, Nokia, France. We demonstrate an accurate digital representation of an unrepeatered line based on separate measurement- based machine learning models of Remote Optically Pumped Amplifier and Raman amplification. We assess the accuracy via OSNR measurements in the line.		W4J.4 • 17:30 Invited Optically Upconverted, Spatially Co- herent Phased-Array-Antenna Feed Networks for Beam-Space MIMO in 5G Cellular Communications, Dennis W. Prather ^{1,2} ; ¹ Univ. of Delaware, USA; ² Phase Sensitive Innovations, USA. We present an RF-photonic phased-array receiver that provides simultaneous multi-band and multi-beam operation in the millimeter- wave region of the spectrum. It uses a photonic integrated circuit to perform RF beamforming with near unlimited beam- bandwidth product.	W4K.4 • 17:30 London Quantum-Secured Metro Net work, Andrew Lord', Robert Woodward Shinya Murai ³ , Hideaki Sato ³ , James Dynes Paul Wright', Catherine White', Russe Davey', Mark Wilkinson', Piers Clinton Tarestad ⁴ , Ian Hawkins', Kristopher Far rington', Andrew Shields ² ; ¹ BT, UK; ² Toshib Research Europe, UK; ³ Toshiba, Japar ⁴ EY, UK. We describe a London Quantur Secured Metro Network using Quantur Key Distribution between three London nodes together with customer access tails The commercially-ready solution is full integrated into the BT network and on boarded its first customer.

Room 1AB	Room 2	Room 3	Room 6C	Room 6D	Room 6E
W4A • Symposium: Beyond the Hype of Network Analytics: Use Cases, Feasibility and Barriers II— Continued	W4B • Lasers and CPO— Continued	W4C • Advanced Optical Technologies—Continued	W4D • Hollow Core Fiber— Continued	W4E • Direct Detection and Short Reach Transmission Systems—Continued	W4F • Converged Fixed and Mobile Networks— Continued
	W4B.5 • 17:45 Lithium-Niobate-Based Narrow-Line- width Frequency-Agile Integrated Lasers With Petahertz Frequency Tuning Rate, Viacheslav Snigirev ¹ , Annina Riedhauser ² , Grigorii Lihachev ¹ , Johann Riemensberger ¹ , Rui N. Wang ¹ , Charles Moehl ² , Mikhail Churaev ¹ , Anat Siddharth ¹ , Guanhao Huang ¹ , Youri Popof ^{22,3} , Ute Drechsler ² , Daniele Caimi ² , Simon Hoenl ² , Junqiu Liu ¹ , Paul Seidler ² , Tobias Kippenberg ¹ ; ¹ EPFL, Switzerland; ² IBM Research Europe, Switzerland; ³ ETH Zurich, Switzerland. We demonstrate an electro-optically tunable hybrid integrated laser self-injection locked to a mode of a heterogeneously integrated lithium-niobate-on-Damascene-silicon- nitride microresonator. An intrinsic linewidth of 3 kHz and a frequency tuning rate of 12 × 10 ¹⁵ Hz/s were observed. Proof-of- principle coherent LiDAR experiments were performed.	W4C.5 • 17:45 Experimental Demonstration of Cha- otic Secure Transmission With Mutu- al-Injection of Semiconductor Laser Over 130-km Multi-Core Fiber, Lei Shen ² , Zhongyang Wang ¹ , Min Yang ¹ , Ziyi Tang ¹ , Lei Zhang ² , Changkun Yan ² , Liubo Yang ² , Ruichun Wang ² , Jun Chu ² , Jian Wang ² ; Huazhong Univ. of Science and Techn, China; ² State Key Laboratory of Optical Fiber and Cable Manufacture Technology, China. We propose and demonstrate chaotic synchronization and communication based on mutual-injection of the semiconductor laser over long- distance multi-core fiber (MCF). It achieves chaotic secure transmission with successful encryption and decryption through 130-km seven-core fiber in the experiment.	W4D.5 • 17:45 Wideband Transmission in the 1-µm Band Based on a Hollow-Core Fiber and Wide- band YDFA, Yang Hong ^{1,2} , Xin Huang ¹ , Yong-Min Jung ¹ , Hans C. Mulvad ¹ , Hesham Sakr ¹ , Natsupa Taengnoi ¹ , Kyle R. Bottrill ¹ , Francesco Poletti ¹ , Periklis Petropoulos ¹ , David J. Richardson ¹ ; 'Optoelectronics Research Centre, Univ. of Southampton, UK; ² Nokia Bell Labs, France. We show the potential of combining a hollow- core NANF with a wideband YDFA for 1-µm transmission through a conceptual demonstration. Penalty-free transmission over a 2.24-km NANF at >100Gb/s is reported across a 16.3-THz bandwidth (1020-1080nm).	W4E.5 • 17:45 Performance Evaluation of Low-Complex- ity Channel-Polarized Multilevel Coded 146-Gbaud PDM Probabilistically Shaped 16QAM Over 101-km Transmission, Takeshi Kakizaki', Masanori Nakamura', Fukutaro Hamaoka', Yoshiaki Kisaka'; 'NTT Corporation, Japan. We experimentally show that low-complexity channel-polarized multilevel coding enables up to 74% decoding-complexity reduction compared to concatenated codes over a 101-km 146-Gbaud probabilistically shaped 16QAM signal transmission.	W4F.4 • 17:45 Demonstration of Energy Efficient Op timization in Beyond 5G Systems Sup ported by Optical Transport Networks Petros Georgiadis', Markos Anastasopou los', Alexandros Ioannis Manolopoulos Victoria Maria Alevizaki', Navid Nikaein' Anna Tzanakaki'; National and Kapodistria Univ. of, Greece; ² Department of Commun cation Systems, Eurecom, France. The pape proposes an optimization framework usin, artificial intelligence to optimize the energ efficiency of a BSG system operating over a SDN controlled optical transport network The system is evaluated over an operationa BSG testbed
	W4B.6 • 18:00 Invited FMCW Lidar, Mehdi Asghari'; 'SiLC Tech- nologies, Inc., USA. Abstract not available.	W4C.6 • 18:00 Hybrid Distributed Acoustic Sensing and Kramers-Kronig Communication System Over a two-Mode Fiber, Juan M. Marin Mosquera', Dmitrii Briantcev', Chun Hong Kang', Omar Alkhazragi', Tien Khee Ng', Islam Ashov' Abderzahmen Trichil' Boon	W4D.6 • 18:00 Estimation of Kerr Nonlinearity in an Anti- Resonant Hollow-Core Fiber by High-Or- der QAM Transmission, Dawei Ge ¹ , Shoufei Gao ² , Mingqing Zuo ¹ , Yuyang Gao ³ , Yingy- ing Wang ² , Baoluo Yan ⁴ , Bing Ye ⁴ , Dechao Zhang ¹ Wei Ding ² Han Li ¹ Zhangyuan	W4E.6 • 18:00 Invited Single-Ended Coherent Receivers: From DC-Coupled to AC-Coupled Photodetec- tors, Son T. Le ¹ ; 'Nubis Communications, USA. We review the concept of single- ended coherent receivers and discuss	W4F.5 • 18:00 Invited Efficient Transport of ECPRI Fronthau Over PON, Jochen Maes', Sarvesh Bid kar ² , Michael Straub ² , Thomas Pfeiffer ² Rene Bonk ² ; ¹ Nokia Bell Labs, Belgium ² Nokia Bell Labs, Germany, Passive optica

Zhang¹, Wei Ding², Han Li¹, Zhangyuan

Chen³; ¹China Mobile Research Inst., China;

²Jinan Univ., China; ³Peking Univ., China;

⁴ZTE, China. We propose a novel technique

to measure Kerr nonlinearity in a hollow-

core fiber based on nonlinear phase shift

estimation by high-order QAM transmission.

The measured $n_{2, Kerr}$ of the NANF-5 medium

is <2.20×10⁻²³ m²/W.

how LO power and signal power can be

accurately estimated when AC-coupled

photodetectors are used instead of DC-

coupled photodetectors

networks (PONs) facilitate small cell

deployments. Back- and midhaul already

make efficient use of PON. We explain

the steps taken in mobile and in PON

industries to enable efficient eCPRI fronthaul

over PON.

Islam Ashry¹, Abderrahmen Trichili¹, Boon

S. Ooi¹; ¹KAUST, Saudi Arabia. We report

on the co-propagation of distributed

acoustic sensing (DAS) and Kramers-Kronig

communication scheme over a two-mode

fiber, achieving DAS with a signal-to-noise

ratio larger than 2 dB and gross data rate

of 2.04 Gbps.

Room 6F	Room 7AB	Room 8	Room 9	Room 4
W4G • Machine Learning for Estimation and Forecasting—Continued	W4H • Transmission Systems and Modelling—Continued	W41 • Open Networking Summit: Top to Bottom: Practical Approaches to Openness, Disaggregation, and Reaggregation in Optical Communication— Continued	W4J • Hybrid Communication/Sensing Systems—Continued	W4K • Quantum Networks— Continued
W4G.5 • 17:45 986 km Field Trial of Cascaded ANN- Based Link-Penalty Models for QoT Pre- diction, Ruizhi Yang', Sen Shen', Haiyuan Li', Ziming Shi', Rui Wang', Reza Nejabati', Shuangyi Yan', Dimitra E. Simeonidou'; 'Univ. of Bristol, UK.Cascaded ANN-based link penalty models are developed and demonstrated for QoT predictions over a 986-km field trial testbed, with precision of ± 0.16 dB. Co-training of ANN models al- lows network-level QoT prediction feasible.	W4H.5 • 17:45 110.4 Tbit/s Same-Wavelength Bidirec- tional Optical Fiber Transmission Over 100 km G. 654D Fiber in Super-C Band With Rayleigh Scattering Noise Suppressed by Raman Amplifiers, Chengcheng Wu ¹ , Wei Li ¹ , Ming Luc ² , Shaohua Yu ² , Zhixue He ³ , You Wang', Zhongshuai Feng ¹ , Peili He ¹ , Weihua Lian ¹ , Muyang Me ¹ , Xu Zhang ² , Liang Me ¹ , Xuefeng Wu ⁴ ; 'Huazhong Univ of Science and Technology, China; 'State Key Labora- tory of Optical Communication Technolo- gies and Networks, Wuhan 430200, China, China; ³ Feng Cheng Laboratory, Shenzhen, China, China; ⁴ Fiberhome Telecommunica- tion Technologies Co., Ltd, Wuhan, China, China, We have demonstrated a capacity of 111.6 Tbit/s over a 75-km G.654D fiber along with a capacity of 110.4 Tbit/s over			W4K.5 • 17:45 Invited Quantum Networks: the Path Beyond Just QKD, Siddarth Koduru K. Joshi ¹ ; ¹ Univ. of Bristol, UK. Abstract not available.

W4G.6 • 18:00 QoT Estimation Improvement With Inputs

Refinement Tool for C+L Networks, Xin Yang¹, Alessio Ferrari¹, Nathalie Morette¹, Yvan Pointurier¹; ¹Huawei Technologies France SASU, France. We propose a technique to estimate lumped losses thus OSNR, nonlinear SNR, GSNR, and SNR in C+L optical networks. We show with simulations that SNR estimation accuracy is within 0.5dB and that the technique is robust to uncertainty due to aging.

W4H.6 • 18:00

transmission scheme.

Robust Longitudinal Power Profile Estimation in Optical Networks Using MMSE With Complex Scaling Factor, Inwoong Kim', Olga Vassilieva', Ryu Shinzaki', Motohiko Eto', Shoichiro Oda', Paparao Palacharla'; '*Fujitsu Network Communications, Inc, USA; 'Efujitsu Limited, Japan.* We propea a power profile estimator using MMSE, that automatically adjusts the scaling and nonlinear rotation of constellation with complex scaling factor. We demonstrate robust performance in simulation and experiment, even at higher launch powers.

100 km in super C-band based on the same-wavelength bidirectional optical fiber

W4J.5 • 18:00 Top-Scored Photonic-Based W-Band Flexible TFDM Integrated Sensing and Communication System for Fiber-Wireless Network, Boyu Dong¹, Junlian Jia¹, Guoqiang Li¹, Jiangyang Shi^{1,2}, Haipeng Wang¹, Zhenzhou Tang³, Junwen Zhang^{1,2}, Shilong Pan³, Nan Chi^{1,2}; ¹Fudan Univ., China; ²Peng Cheng Laboratory, China; ³Nanjing Univ. of Aeronautics and Astronautics, China. We proposed and experimentally demonstrated a novel W-band photonic-based integration of sensing and communication system for the fiber-wireless integrated network with flexible waveforms and TFDM resource allocation capability, achieving adaptive sensing resolution and communication data-rates.

Room 1AB	Room 2	Room 3	Room 6C	Room 6D	Room 6E
W4A • Symposium: Beyond the Hype of Network Analytics: Use Cases, Feasibility and Barriers II— Continued	W4B • Lasers and CPO— Continued	W4C • Advanced Optical Technologies—Continued	W4D • Hollow Core Fiber— Continued	W4E • Direct Detection and Short Reach Transmission Systems—Continued	W4F • Converged Fixed and Mobile Networks— Continued
		W4C.7 • 18:15			

Direct Intensity Detection of Complex Communication Data Signals Using a Real-Time Photonics Spectrogram, Connor M. Rowe¹, Benjamin Crockett¹, Jose Azaña¹, 'INRS, Canada. We use a time-lens spectrogram for real-time recovery of complex modulation data signals using a single photodiode, no local oscillator, and simple decision method. Our proof-ofconcept experiment decodes QAM4 and QAM8 under the FEC limit.

Room 6F	Room 7AB	Room 8	Room 9	Room 4
W4G • Machine Learning for Estimation and Forecasting—Continued	W4H • Transmission Systems and Modelling—Continued	W4I • Open Networking Summit: Top to Bottom: Practical Approaches to Openness, Disaggregation, and Reaggregation in Optical Communication— Continued	W4J • Hybrid Communication/Sensing Systems—Continued	W4K • Quantum Networks— Continued
W4G.7 • 18:15 Traffic Prediction Based on P-ConvLSTM in Optical Transport Networks, Xin Qin ¹ , Qian Hu ¹ , Xiaoli Huo ¹ , Jiuyu Xie ¹ ; 'China Telecom Research Inst., China. Based on Prophet- guided neural network, P-ConvLSTM is proposed for traffic prediction. Proved by multi-group real traffic data in OTN, P-ConvLSTM has high accuracy and strong generalization.	W4H.7 • 18:15 Nonlinear-Penalty-Free Real-Time 40x800Gb/s DP-64QAM-PCS Transmis- sion With Launch Power of 28 dBm Over a Conjoined-Tube Hollow-Core Fiber, Dawei Ge ¹ , Shoufei Gao ² , Mingqing Zuo ¹ , Yuyang Gao ³ , Yingying Wang ² , Dechao Zhang ¹ , Wei Ding ² , Han Li ¹ , Xiaodong Duan ¹ , Zhangyuan Chen ³ , ¹ China Mobile Research Inst., China; ² Jinan Univ., China; ³ Peking Univ., China. Real-time 40×800Gb/s DP-64QAM-PCS transmissions over three different optical fibers (i.e., CTF, G.652.D, G.654.E) are tested under 28-dBm launch power for the first time. No nonlinear penalty is observed in the CTF link.		W4J.6 • 18:15 Duobinary-Coded Coherent ΣΔ Ra- dio-Over-Fiber Transmission at 9 GHz Downlink Channel Spacing, Bernhard Schrenk', Florian Honz'; 'AIT Austrian Inst. of Technology, Austria. We show digitized radio-over-fiber transmission using coherent envelope detection. A low EVM of 1.3%, a high optical budget of 34.6dB and 25% improvement in spectral occupancy are found when introducing duobinary signaling and coherent detection.	

Room 2

Room 3

Room 6C

Room 6D

Room 6E

06:00–07:30 Rise and Shine Morning Run/Walk, Hilton Bayfront

07:30–08:00 Coffee Break, Upper Level Corridors

08:00-10:00

Sensing

Berlin, Germany

Th1C • Panel: Promises.

Prospects and Challenges

of VCSELs for Data Center

Interconnects, Free-Space

Organizers: Connie Chang-Hasnian, Brexel

Photonics, China; Fotini Karinou, Microsoft

Research Ltd, UK; Hai-Feng Liu, HG Genu-

ine, China; Jim Lott, Technical University

Speakers: Ernesto Ciaramella, Scuola Supe-

riore Sant'Anna, Italy; John R. Joseph, Op-

Communications, and

08:00-10:00 Th1A • Novel Photonic **Devices and Applications** Presider: Samuel Palermo; Texas A&M Univ., USA

08:00-10:00 Th1B • Nonlinear-Optical Amplifiers and Oscillators

Th1A.1 • 08:00 Invited

Integrated Comb-Driven Silicon Photonics, Xingjun Wang¹, Bitao Shen¹, Haowen Shu¹, Lin Chang², Yuansheng Tao¹, Weigiang Xie², John E. Bowers²; ¹State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking Univ., China; ²Department of Electrical and Computer Engineering, Univ. of California, Santa Barbara, Armenia. We realize the combination of integrated microcomb and silicon photonics, employing the advanced AlGaAsOI optical nonlinear platform and novel SiPh chips. Data link with 2-Tbps aggregate rate and highly reconfigurable radio frequency filter are demonstrated

Presider: Michael Vasilyev; Univ. of Texas at Arlington, USA

Th1B.1 • 08:00 Invited

Design and Applications of Highly Nonlinear Fibers, Ryuichi Sugizaki¹, Masanori Takahashi¹, Shigehiro Takasaka¹, Toshio Kimura¹; ¹Furukawa Electric, Japan. Highly nonlinear fibers which can be utilized in all-optical signal processing is introduced. Characteristics of highly nonlinear fiber and requirements from various applications are summarized.

Th1D.1 • 08:00

Th1D.2 • 08:15

08:00-10:00

Th1D • Data Center

Networks and Control

Presider: To be announced.

PROPH: A Contention-Free and Elastic Bandwidth Scheduling Scheme for AWGR-Based Optical DCN, Xinwei Zhang¹, Xuwei Xue¹, Bingli Guo¹, Xiaoyue Su¹, Yisong Zhao¹, Yuanzhi Guo¹, Shanguo Huang¹; ¹Beiiing Univ. of Post and Telecommu. China. A contention-free scheduling scheme PROPH is proposed for AWGR-based optical DCN to elastically allocate adaptable bandwidth. Assessments validate that the network deploying PROPH decreases 73.6% packet loss and 11.9% server-to-server latency, improves 11.6% network throughput.

GCN-Assisted SnF Scheduling Method for

Inter-Datacenter Bulk Transfers, Xiao Lin¹,

Lanfang Zheng¹, Yajie Li³, Kegin Shi²; ¹Col-

lege of Physics and Information Engineer-

ing, Fuzhou Univ., China: ²Shanghai Jiao

Tong Univ., China; 3Beijing Univ. of Posts

and Telecommunications, China. A GCN-

assisted scheduling method is presented to schedule bulk transfers across the inter-DCN

in a store-and-forward manner. Simulations

demonstrate that the proposed method ob-

tains better network performance and lower

complexity than the conventional methods.

tiPulse Inc, USA; Cy Lu, Lumentum Operations Inc, USA; Ramana Murty, Broadcom, USA; Jiaxing Wang, Berxel Photonics, China Description: We aim for thought-provoking presentations and discussions on future

promises and challenges of VCSELs for data center interconnects, free space optical communications, and sensing applications. VCSELs are the light source of choice for

short-reach data center interconnects, with 53 Gbps per lane (26.5 Gbaud PAM4) arrays being widely deployed and 106 Gbps per lane (via 53 Gbaud PAM4) arrays under pilot runs. However, can they scale up to 200 Gbps per channel with the same oxideconfined VCSEL structure? Will it require a radically different device technology to bring the bandwidth to 40 GHz and to mitigate the reliability issues due to increased operating temperatures when moving the pluggable transceivers from the front plate to the ASIC? What are the cost drivers and challenges to overcome?

Will VCSELs or VCSEL arrays enable fifth (5G) and sixth generation (6G or Next G) optical wireless communication at 10 to 50 Gbps per lane over meters to kilometers? What role will VCSELs play in 5G and 6G optical wireless communication and sensing for Internet of Things, manufacturing, backhaul, last mile, urban mesh networks, and more?

08:00-10:00 Th1E • Beyond 400G Transmission Presider: Hungchang (James) Chien; Marvell Technology Inc., USA

Th1E.1 • 08:00 Invited

System Impact of Laser Phase Noise on 400G and Beyond Coherent Pluggables, Hai Xu¹, Marcos O. Rebellato², Shih-Cheng Wang1; 1Marvell Technology, Inc, USA; ²Marvell Technology, Inc, Argentina. We show that 800G systems are highly sensitive to phase noise of local oscillator. We introduce a PI model that correlates well with measured performance. We present performance simulations and limitations of current timing recovery.

08:00-10:00 Th1F • Machine Learning and Advanced Digital Signal Processing Presider: Kohki Shibahara:

NTT Network Innovation Laboratories, Japan

Th1F.1 • 08:00 Invited

Real-Time MIMO Adaptive Equalization With Carrier-Phase Recovery for Mode-**Division Multiplexed Optical Coherent** System, Koji Igarashi¹; ¹Osaka Univ., Japan. We review our designed and implemented real-time MIMO adaptive equalization with carrier-phase recovery and frequency offset, which has been introduced to real-time mode-division multiplexed transmission experiments.

06:00-07:30 Rise and Shine Morning Run/Walk, Hilton Bayfront

07:30–08:00 Coffee Break, Upper Level Corridors

08:00-10:00 Th1G • Signal Processing in Next-Generation PON

Presider: Paola Parolari; Politecnico di Milano, Italy

Th1G.1 • 08:00

Interoperability and Experimental Evaluation of TDEC(Q) Testing for 50 and 100G PONs, Dora van Veen¹, Robert Borkowski¹, Amitkumar Mahadevan¹, Vincent Houtsma¹; 'Nokia Bell Labs, USA. We detail the TDEC(Q) method and its usage in the context of system level specifications for 50 and 100G PONs. Real-time experimental results obtained with representative PON transmitters are used to analyze and validate interoperability of these PONs.

Th1G.2 • 08:15

Study of TDEC for 50G-PON Upstream at 50 Gb/s in Negative Dispersion Regime Using 25G-Class Transceivers, Giuseppe Caruso^{2,1}, Ivan N. Cano², Giuseppe Talli², Derek Nesset³, Roberto Gaudino¹; ¹Politecnico di Torino, Italy; ²Munich Research Center, Huawei Technologies, Germany; ³Ipswich Research Center, Huawei Technologies, UK. We evaluate TDEC and Rx sensitivity in a negative dispersion regime with 25G-class DML and EML modulated at 50 Gb/s. Results show that TDEC can effectively predict the performance of both transmitters for 50G-PON upstream.

08:00–10:00 Th1J • Panel: How Can We Start to Consistently and Quantitatively Account for End-to-End Power Consumption, Beginning with a Focus on 100 Meter Datacenter Links?

Organizers: Trey Greer, NVIDIA, USA; Clint Schow, University of California, Santa Barbara ECE, USA

Speakers: Andreas Bechtolsheim, Arista Networks, USA; Tom Gray, Nividia Research, USA; Thomas Lijeberg, Intel Corporation, USA; Alexander Rylakov, Nokia, Canada

Description: The power efficiency of short (<100 m) datacenter optical links has become increasingly important, and pJ/bit has become a ubiquitous figure of merit. However, it is difficult or often impossible to assess and compare true end-to-end power dissipation for various link architectures. Optical link papers often stop power accounting at the optical transducer edges, and do not include the power costs of (de) serialization and clock distribution on the PIC. Furthermore, as we progress toward co-packaged optics, we need a consistent framework for estimating the power of various electrical links to the host ASIC. This panel has a broad scope that extends from systems to devices, and is targeted at beginning to build consensus on how to consistently and quantitatively account for end-to-end power in optical links.

Our goal is to provide researchers with the tools they need to fit their link components into an overall link power consumption budget. We hope to start discussions on the power costs of:

- FEC power per bit vs BER.
- DFE, FFE, and receiver linear EQ.
- Clock distribution and data (de)serialization at various symbol rates.
- 'Gear Boxes' for converting data stream formats between optical vs electrical layers.
- · The electrical links for CPO vs NPO vs pluggable.
- Optical losses at package connections and within PICs that drive up laser power.

08:00–10:00 Th11 • THz Optical Communications Presider: Lalitha Ponnampalam; Univ. College London, UK

Th1I.1 • 08:00 Tutorial

THz Technologies for Optical Communications, Alwyn J. Seeds¹; ¹Univ. College London, UK. Connections between user devices and the immense bandwidth of the optical fibre network are usually by microwave wireless, limiting the user bandwidth. This tutorial describes how the use of THz technologies could overcome this limitation.Abstract not available.

08:00-10:00

Th1H • Satellite Communications and UV, LWIR Free Space Optical Communications

Presider: Morio Toyoshima; National Inst of Information & Comm Tech, Japan

Th1H.1 • 08:00

8.1 Gbps PAM8 Long-Wave IR FSO Transmission Using a 9.15-µm Directly-Modulated QCL With an MCT Detector, Mahdieh Joharifar¹, Mengyao Han^{2,1}, Richard Schatz¹, Rafael Puerta^{3,1}, Yan-Ting Sun¹, Yuchuan Fan⁴, Grégory Maisons⁵, Johan Abautret⁵, Roland Teissier⁵, Lu Zhang⁶, Sandis Spolitis^{7,8}, Muguang Wang², Vjačeslavs Bobrovs⁷, Sebastian Lourdudoss¹, Xianbin Yu⁶, Sergei Popov¹, Oskars Ozolins^{1,4}, Xiaodan Pang^{1,4}; ¹KTH, Sweden; ²Inst. of Lightwave Technology, Key Lab of All Optical Network & Advanced Telecommunication Network. Ministry of Education, Beijing Jiaotong Univ., China; ³Ericsson, Sweden: ⁴RISE Research Inst.s. Sweden: ⁵mirSense, France; ⁶College of Information Science and Electronic Engineering, Zhejiang Univ., China; ⁷Inst. of Telecommunications, Riga Technical Univ., Latvia: 8Communication Technologies Research Center, Riga Technical Univ., Latvia. We experimentally demonstrate a Long-Wave IR FSO link with a 9.15-µm directly modulated quantum cascade laser at room temperature. Up to 8,1 Gb/s PAM8 transmission over 1.4 meter is achieved with a wideband MCT detector. © 2022 The Author(s)

Th1H.2 • 08:15

Gbps-Class Solar-Blind WDM Optical Wireless Communication by (264, 274, 282)-nm Deep-UV LEDs and CsTe Photomultiplier Tube, Yuki Yoshida¹, Kazunobu Kojima², Masaki Shirajwa¹, Atsushi Kanno^{3,1}, Akira Hirano⁴, Yosuke Nagasawa⁴, Masamichi Ipponmatsu⁴, Naokatsu Yamamoto¹, Shiqefusa F, Chichibu⁵, Yoshinari Awaji1; 1National Inst of Information & Comm Tech, Japan; ²Graduate School of Engineering, Osaka Univ., Japan; ³Nagoya Inst. of Technology, Japan; ⁴UV Craftory Co. Ltd., Japan; 5Inst. for Multidisciplinary Research for Advanced Materials, Tohoku Univ., Japan. A Gbps-class wavelength-division multiplexing transmission within the solar-blind band was demonstrated for the first time with (264, 274, 282)nm AlGaN-based LEDs and a CsTe photomultipliertube over a 2-m weakly-collimated free-space link in standard indoor illumination.

Room 1AB	Room 2	Room 3	Room 6C	Room 6D	Room 6E
Th1A • Novel Photonic Devices and Applications— Continued	Th1B • Nonlinear-Optical Amplifiers and Oscillators— Continued	Th1D • Data Center Networks and Control— Continued	Th1C • Panel: Promises, Prospects and Challenges of VCSELs for Data Center Interconnects, Free-Space Communications, and Sensing—Continued	Th1E • Beyond 400G Transmission—Continued	Th1F • Machine Learning and Advanced Digital Signal Processing—Continued
Th1A.2 • 08:30 Automatic in-Situ Optical Linearization of Silicon Photonic Ring-Assisted MZ Modulator for Integrated RF Photonic SoCs, Md Jubayer Shawon', Vishal Saxena'; 'Univ. of Delaware, USA. We experimentally demonstrate automatic optical linearization of a Ring-Assisted MZ modulator with SFDR > 110dB.Hz2/3, fabricated in a silicon photonic foundry process. The linearization algorithm reconfigures the modulator to its optimum SFDR or other desired regimes regardless of random phase offsets and process/temperature variations.	Th1B.2 • 08:30 Temperature-Tuned two-Segment Highly- Nonlinear Fiber With Increased Stimu- lated Brillouin Scattering Threshold, Cheng Guo', Michael Vasilyev ¹ , Youichi Akasaka ² , Paparao Palacharla ² , Shigehiro Takasaka ³ , Ryuichi Sugizaki ³ , 'Department of Electrical Engineering, Univ. of Texas at Arlington, USA; ² Advanced Technol- ogy Labs, Fujitsu Network Communica- tions, USA; ³ Furukawa Electric Co. Ltd, Japan. We apply temperature tuning to align zero-dispersion wavelengths of two fiber segments with different Brillouin frequencies. The resulting two-segment highly-nonlinear fiber exhibits 2.1-dB- increased stimulated Brillouin scattering threshold and flattened parametric gain.	Th1D.3 • 08:30 Invited How Data Center Networks Can Im- prove Through Co-Packaged Optics, Pavlos Maniotis', Laurent Schares', Daniel Kuchta'; 'IBM TJ Watson Research Center, USA. Building higher-radix switches with co-packaged optics can help improving network locality in data center networks. Simulations show completion time reductions of up to 40% for an all-to-all communication pattern and a network stack latency of 1.25 us.	Decades of manufacturing and deployment experience in communication systems have provided a foundation in two new markets for VCSELs: 3D sensing and automotive Li- DAR. Can the rapid innovations in 3D sens- ing and LiDAR help to transform the VCSEL in other market segments, and if yes, how? In this Panel, we will discuss state-of-the-art VCSEL technologies, remaining device and systems challenges, synergies across differ- ent market segments, and future emerging applications.	Th1E.2 • 08:30 Transmission and Reception of 17×480 Gbit/s PDM-16QAM With Tx/Rx I/Q Imbalance Compensation and Simplified MLSE for Metro-Regional 400G Optical Communications, Fan Li ¹ , Dongdong Zou ¹ , Weihao Ni ¹ , Zhiwei Chen ¹ , Xingwen Yi ¹ , Zhaohui Li ¹ ; 'Sun Yat-Sen Univ., China. We experimentally demonstrate a single-carrier 400G Metro/regional communications based on 60-GBaud PDM-16QAM over 430-km SMF-28. Joint GPD and GSOP and 4×4 MIMO LMS equalizer are adopted to compensate Rx/Tx I/Q imbalance, and simplified MLSE with 99.61% computational complexity reduction is employed to mitigate channel bandwidth constraint.	Th1F.2 • 08:30 Pre-Link Compensation of Nonline. Signal Distortion by a Phase Conj gation and Parameter Profiled Fib- Module, Mark D. Pelusi', Ryosuke Mats moto', Takashi Inoue', Shu Namiki'; 'A/S Japan. Pre-compensation of nonline signal distortion in a transmission link b optical phase conjugation is enhance by a Raman-amplified paramete profiled fiber for improved propagatic symmetry. Application to 5×12-Gb/s-D 16QAM signals before a 2×160-km lit demonstrates 2.2-dB higher Q ² -factor.
Th1A.3 • 08:45 Fast (< 9.4 µs) Full-C-Band Tuning of Sili- con Photonics Double-Ring Filters Using Feed-Forward Control, Ryotaro Konoike ¹ , Hiroyuki Matsuura ¹ , Keijiro Suzuki ¹ , Ryosuke Matsumoto ¹ , Kazuhiro Ikeda ¹ , Ken-ichi Sato ¹ ; ¹ AIST, Japan. We demonstrate full-C-band (1530-1565 nm) tuning of narrowband (~20 GHz) silicon ring filters with <9.4 µs optical 60% rise time, which is >25 times faster than step-function control, by adopting inverse-designed feed-forward analog control.	Th1B.3 • 08:45 Mid-Span Pump Phase Shift Applied to WDM Wavelength Conversion for the Suppression of FWM Crosstalk, Kyle Bot- trill', Natsupa Taengnoi', Hao Liu', Periklis Petropoulos'; 'Univ. of Southampton, UK. We apply mid-span pump-phase shifting to the wavelength conversion of a 9 channel WDM band in order to suppress inter-channel nonlinear crosstalk. SNR improvements between 3-6dB are observed through the use of the technique.			Th1E.3 • 08:45 Impact of Laser Impairments on DSCM- Based 800G Point-to-MultiPoint Coherent Transmission Systems, Sami Mumtaz ¹ , Trung-Hien Nguyen ¹ , Abir Hraghi ¹ , Abel Lorences-Riesgo ¹ , Yann Frignac ¹ , Gabriel Charlet ¹ , Yu Zhao ¹ , ¹ Huawei Technologies, France: We experimentally investigate the impact of laser frequency linewidth and jitter on the design of uplink point-to- multipoint DSCM systems. The performance degradation due to sub-band overlap, bandwidth limitation and DSP penalty is quantified.	Th1F.3 • 08:45 On the Impact of Frequency Variation o Nonlinearity Mitigation Using Frequenc Combs, Ronit S. Sohanpal', Eric Sillekens Filipe Ferreira', Robert I. Killey', Polina Bay vel', Zhixin Liu', 'Unix. College London, Ui We investigated the impact of linewidth an dithering-induced frequency variation o the performance of nonlinearity mitigatio using frequency combs. Compared t independent laser arrays, >2dB SNR gai can be achieved using comb sources.
Th1A.4 • 09:00 Slim Push-Pull Fiber Array Connector for Optical Chips, Lars Brusberg ¹ , Jürgen Mat- thies ² , Jason Grenier ¹ , Jeffrey Clark ¹ , Betsy Johnson ¹ , Chad Terwilliger ¹ ; 'Corning Inc, USA; ² Corning Optical Communications GmbH & Co KG, Germany. We report connector loss of 0.42 dB for a low-profile fiber-to-chip connector to replace fiber pigtails and enable flip-chip electronic assembly of optical chips for co-packaged optics.	Th1B.4 • 09:00 Low-Noise Phase-Sensitive Optical Parametric Amplifier With Local Pump Generation Using Digital Frequency and Phase Control, Rasmus Larsson ¹ , Kovendhan Vijayan ¹ , Jochen Schröder ¹ , Peter A. Andrekson ¹ ; 'Chalmers Univ. of Technology, Sweden. We demonstrate a novel, lossless approach, eliminating the need to co-propagate pumps in phase- sensitive parametric amplifier-based links, by control loops creating a locked pump within the amplifier. Gain, noise and BER measurements validate the performance	Th1D.4 • 09:00 P4INC-AOI: When in-Network Computing Meets All-Optical Interconnect for Adap- tive and Low-Latency Optical DCN, Xuexia Xie', Hao Yang', Zuqing Zhu'; 'Univ of Sci- ence and Technology of China, China. We propose and experimentally demonstrate P4INC-AOI for orchestrating in-network computing and all-optical interconnect in an optical data-center network. Experimental results show that P4INC-AOI reduces job completion time of Hadoop MapReduce jobs by 77.9% on average.		Th1E.4 • 09:00 Multi-Parameter Al-Based Bandwidth Compensation for Energy-Efficient 800G Transmission, Marco A. Fernandes ^{1,2} , Adriano C. Messias ³ , Tomaz d. Vilela ³ , Daniel A. Formiga ³ , Jacklyn D. Reis ³ , Paulo Monteiro ^{2,1} , Fernando Guiomar ^{1,2} ; ¹ Instituto de Telecomunicacoes, Portugal; ² Unix of Aveiro, Portugal; ³ Ideal Electronic Systems, Brazil. We propose a novel energy- efficient Al-based bandwidth compensation technique that jointly optimizes Tx and Rx static filters. Experimental demonstration in a 800G system reveals gains of more than	Th1F.4 • 09:00 Highly Scalable WDM Nonlinear Frequer cy Division Multiplexed Transmission Sy tem Using Spectral Overlap, Olaf Schulz Alvaro Moscoso-Mártir ² , Jeremy Witzens Stephan Pachnicke ¹ ; <i>Kiel Univ., German</i> , <i>?RWTH Aachen Univ., Germany.</i> We preser a highly scalable PIC-based nonlinea frequency division multiplexed transmissio system in which b-modulated channe are wavelength division multiplexed wit spectral overlap so as to obtain a seamler spectrum without frequency guard bands

measurements validate the performance.

a 800G system reveals gains of more than 1 dB when compared with typical digital

pre-emphasis.

Room 6F	Room 7AB	Room 8	Room 9
Th1G • Signal Processing in Next- Generation PON—Continued	Th1J • Panel: How Can We Start to Consistently and Quantitatively Account for End-to-End Power Consumption, Beginning with a Focus on 100 Meter Datacenter Links?—Continued	Th11 • THz Optical Communications—Continued	Th1H • Satellite Communications and UV, LWIR Free Space Optical Communications—Continued
Th1G.3 • 08:30 Equalizer Convergence for Various Transmission Channels and Multi-Rate Upstream 50G-PON, Gael Simon', Flavio Nogueira Sampaio ¹ , Fabienne Saliou ¹ , Jeremy Potet ¹ , Georges Gaillard ¹ , Philippe Chan- clou ¹ ; 'Orange, France. We assess the feasibility of multiple transmission channel and multi-rate upstream 50G-PON. The TDEC shows that a unique preset filter may be used at both 50Gb/s and 25Gb/s to meet interoperability without adaptive equalization.			Th1H.3 • 08:30 Invited Adaptive Optics for Satellite Laser Communica- tions, Yoshihiko Saito ¹ , Dimitar Kolev ¹ , Jun Naka- zono ¹ , Yuma Abe ¹ , Morio Toyoshima ¹ ; ¹ NICT Hokuriku Research Center, Japan. The development of laser communication technology between satellites and ground stations has been paid attention recently. On the other hand, the laser communication between satellites and ground stations is always affected by the atmospheric condition. We can compensate this

Th1G.4 • 08:45

Real-Time Software Implementation of Coherent Receiver DSP Adopting Multiplication-Based Parallel Frequency Offset Compensation for Fully Virtualized Access Networks, Takahiro Suzuki¹, Sang-Yuep Kim¹, Jun-ichi Kani¹, Tomoaki Yoshida¹; ¹/NTT Corporation, Japan. This paper proposes multiplication-based parallel frequency offset compensation (FOC) for virtualized access networks and demonstrates realtime softwarization of the full DSP function suite, including polarization demultiplexing, FOC, carrier phase recovery, and decoding, on a server.

Th1G.5 • 09:00 Tutorial

FEC and Equalization Implementation Options for 50Gb/s PON and Beyond: a Reality Check, Alexandre Graell i Amat'; 'Chalmers Univ., Sweden. Abstract not available.

Th1I.2 • 09:00

OFDM-1024QAM Transmission Over 400m at THz Band With Delta-Sigma-Modulation, Kaihui Wang', Jianjun Yu', Weiping Li', Junjie Ding', Feng Wang', Chen Wang', Wen Zhou', Jiao Zhang', Min Zhu', Tangyao Xie', Jianguo Yu', Li Zhao', Feng Zhao', 'Fudan Univ, China; 'Purple Mountain Laboratories, China; 'Beijing Univ. of Posts and Telecommunications, China; Tor the first time, we successfully transmit 1.25GBaud OFDM-256QAM/1024QAM signals over 20km SMF and 400m wireless link at the terahertz band with 1-bit DSM. The BER of OFDM-256QAM/1024QAM can satisfy the FEC threshold of 3.8×10³/4.0×10².

Th1H.4 • 09:00 Tutorial

Space-Grade Analogue and Digital Photonics for Satellite Communications, Antonella Bogoni¹; ¹CNIT, Italy. The talk concerns the potential, the current issues and the emerging technologies for space-grade photonics for satellite communications and not only.

effect by applying the technology of Adaptive Optics that is used for astronomical observation.

Room 1AB	Room 2	Room 3	Room 6C	Room 6D	Room 6E
Th1A • Novel Photonic Devices and Applications— Continued	Th1B • Nonlinear-Optical Amplifiers and Oscillators— Continued	Th1D • Data Center Networks and Control— Continued	Th1C • Panel: Promises, Prospects and Challenges of VCSELs for Data Center Interconnects, Free-Space Communications, and Sensing—Continued	Th1E • Beyond 400G Transmission—Continued	Th1F • Machine Learning and Advanced Digital Signal Processing—Continued
Th1A.5 • 09:15 Self-Aligned Fiber Attach on Monolithic Silicon Photonic Chips: Moisture Effect and Hermetic Seal, Zhuojie Wu ¹ , Ping- Chuan Wang ¹² , Seungman Choi ¹ , Patrick Justison ¹ , Martin Gall ¹ , Jae-Kyu Cho ¹ , Takako Hirokawa ¹ , Yusheng Bian ¹ , Thomas Houghton ¹ , Vaishnavi Karra ¹ , Dan Moy ¹ , Karen Nummy ¹ , Dave Riggs ¹ , Norman Robson ¹ , Ian Melville ¹ , Ken Giewont ¹ ; 'GLO- BALFOUNDRIES, USA; 'State Univ. of New York at New Paltz, USA. We report a study on moisture effect on optical performance of monolithic silicon photonics technologies featuring V-grooves for self-aligned fiber attach. Chip-level hermetic sealing was achieved by implementing moisture barrier for the fiber coupler.	Th1B.5 • 09:15 Low-Noise, Flat-Spectrum, Polarization- Maintaining All-Fiber Frequency Comb for Wideband Communications, Yijia Cai', Ronit S. Sohanpal', Yuan Luc ² , Alexander Heidt ² , Zhixin Liu'; 'Univ. College London, UK; ² Chinese Univ. of Hong Kong, China; ³ Univ. of Bern, Switzerland. We design and optimize a parametric frequency comb generator using all polarization-maintaining components, highly-doped PM fiber and PM highly-nonlinear fibers, obtaining 500 tones over 100nm with >-5dBm per tone and less than 40kHz linewidth.	Th1D.5 • 09:15 P4-Based Hitless FaaS Load Balancer for Packet-Optical Network Edge Con- tinuum, Istvan Pelle ^{1,2} , Francesco Paolucci ³ , Balazs Sonkoly ^{1,2} , Filippo Cugini ³ ; ¹ HSN- Lab, Budapest Univ. of Technology and Economics, Hungary; ² ELKH-BME Cloud Applications Research Group, Hungary; ³ CNIT, Italy. P4 and novel node telemetry are leveraged to provide load balancing of ultra-low latency serverless application to multiple edges. Handling the overload of one edge without observable change in application delay is demonstrated.		Th1E.5 • 09:15 1.96Tbps and 256-Gbaud Dual-Carrier Faster Than Nyquist Signal Transmis- sion Using Two Narrow-Bandwidth Modulators and Single Coherent Receiver, Guoxiu Huang', Hisao Nakashima', Jun Matsui', Yohei Sobu', Shinsuke Tanaka', Takeshi Hoshida', ' <i>Fujitsu Ltd., Japan.</i> A large capacity system basing on Faster- than-Nyquist technologies using narrow- bandwidth components was experimentally demonstrated with a hybrid of simple transmitter DSP and optical-equalization for an efficient spectrum-shaping to achieve 1.96Tbps net rate over 120km transmission.	Th1F.5 • 09:15 PINN for Power Evolution Prediction an Raman Gain Spectrum Identification i C+L-Band Transmission System, Yuche Song', Yao Zhang', Chunyu Zhang', Ji Li', Min Zhang', Danshi Wang', 'Beijin Univ. of Post and Telecommu, China We experimentally demonstrate mult channel power evolution prediction an identification of frequency-dependent fibe characteristics using PINN. A maximur absolute error of 0.3 dB for power predictio is observed on C+L-band transmissio under different loadings.
Th1A.6 • 09:30 Invite Pioneering Silicon Photonics for Wear- able Sensors, Jeffrey B. Driscoll', Philip Perea', Ariel Kauffman', Aaron J. Zilkie', Benjamin Ver Steeg'; ' <i>Rockley Photonics</i> , USA. The Rockley silicon photonics platform has unique advantages perfectly suited to addressing the needs of wearable health sensors. An overview of the platform is presented including its application to non- invasive continuous monitoring of body temperature.	Th1B.6 • 09:30 High-Efficiency Microcombs Aligned With ITU-T Grid for WDM Optical Intercon- nects, Jizhao Zang ^{1,2} , Su-peng Yu ^{1,2} , David Carlson ¹ , Travis Briles ¹ , Yan Jin ^{1,2} , Scott Papp ^{1,2} ; 'NIST, USA; ² Univ. of Colorado Boulder, USA. We report generation of flat soliton microcombs aligned with ITU-T grid. We demonstrate close to 70% pump-to- comb conversion efficiency and the required on-chip pump power is below 40 mW.	Th1D.6 • 09:30 Invited Interconnection Networks With Co- Packaged Photonics, Fabrizio Petrini'; 'Intel Corporation, USA. Abstract not available.		Th1E.6 • 09:30 4.8 Tb/s PS-PAM-8 Bidirectional Transmis- sion Over 10-km 24-Core Fiber Using Lin- ear Equalization at O-Band, Chao Yang ¹ , Runzhe Fan ¹ , Huang Yu ² , Hao Guo ² , Chuyu Peng ² , Ming Luo ¹ , Xi Xiao ^{1,3} , ¹ China Informa- tion Communication Technologies Group, China; ² Fiberhome Fujikura Optic Technol- ogy, China; ³ National Information Opto- electronics Innovation Center, China. 4.8- Tb/s PS-PAM-8 bidirectional transmission is experimentally demonstrated over 10-km 24-core fiber with SOA using only linear equalization at O-band. The experimental results indicate that the MCFs are well- suited for optical short-reach systems employing IM/DD.	Th1F.6 • 09:30 Digital Pre-Distortion Coefficients Identification Using Gauss-Newton Based Direct Learning Architecture, hexun jiang', Meng fan Fu', Yixiao Zhu', Lilin Yi', Weisheng Hu'- Qunbi Zhuge ¹² , 'Shanghai Jiao Tong Univ China; ² Peng Cheng Laboratory, China We propose to identify the coefficient of a digital pre-distortion equalizer base on direct learning architecture (DLA) using the Gauss-Newton method. Experimentar results show that DLA outperforms indirect learning architecture by 0.5dB.
	Th1B.7 • 09:45 Top-Scored 30-Gbaud PM-16-OAM Transmission Over E-, S-, C- and L-Band With Hybrid Raman Amplifier, Pratim Hazarika ¹ , Aleksandr I. Donodin ¹ , Mingming Tan ¹ , Ian Phillips ¹ , Paul Harper ¹ , Wladek Forysiak ¹ ; Yaston Univ.	OFC Career Zone Job Fair	areer Zone, Exhibit Hall Resume Critique Workshop terviews	Th1E.7 • 09:45 Four-Wave Mixing Mitigation by Us- ing Waveguide-Based 4λ-WDM Filters for 800 and 400 GbE, Ai Yanagihara', Mingchen Chen', Shigeru Kanazawa', Yasuhiko Nakanishi', Masahiro Nada',	Th1F.7 • 09:45 Knowledge Distillation Applied to Optica Channel Equalization: Solving the Parallel ization Problem of Recurrent Connection Sasipim Srivallapanondh', Pedro J. Freire' Bernhard Spinnler', Nelson Costa ² , Anto
	UK. We demonstrate 50km, 30-Gbaud PM-16QAM transmission with a hybrid distributed-discrete Raman amplifier over 25.8THz bandwidth. E-band distributed Raman amplification shows 0.7dB averaged Q ² -penalty, versus 1.9dB and 0.9dB due		nd Show Floor, Exhibit Hall, e 10:00–10:30)	Hiroki Taniguchi ² , Kenya Suzuki ¹ ; ¹ NTT Device Innovation Center, NTT Corpora- tion, Japan; ² NTT Network Innovation Laboratories, NTT Corporation, Japan. We report four-wave mixing mitigation by 4A-WDM filters fabricated by silica-based	nio Napoli ² , Sergei K. Turitsyn ¹ , Jaroslav E. Prilepsky ¹ ; ¹ Aston Univ., UK; ² Infinera Germany; ³ Infinera, Portugal. To circumven the non-parallelizability of recurrent neura network-based equalizers, we propose knowledge distillation to recast the RNN
	to Ś-band and C+L-band discrete Raman amplification.	Exhibit	ters Session III, In-Person, Hall B1 ssions available in Exhibit Hall)	planar lightwave circuits for 800- and 400-GbE application. The multiplexing filter integrates a simple polarization- alternating structure on arbitrary lanes for the impairment mitigation.	into a parallelizable feedforward structure The latter shows 38% latency decrease while impacting the Q-factor by only 0.5dB

OFC 2023 • 05–09 March 2023

the impairment mitigation.

Thursday, 9 March

Room 6F	Room 7AB	Room 8	Room 9	Show Floor Programming
h1G • Signal Processing in Next- eneration PON—Continued	Th1J • Panel: How Can We Start to Consistently and Quantitatively Account for End-to-End Power Consumption, Beginning with a Focus on 100 Meter Datacenter Links?—Continued	Th11 • THz Optical Communications—Continued	Th1H • Satellite Communications and UV, LWIR Free Space Optical Communications—Continued	QXP Innovative Silicon-based Midex Materials for Photonic Integration Presented by QXP Technolog Inc.
		Th11.3 • 09:15 Mitigating the Timing-Jitter in Terahertz Com- munications via Nyquist Pulse Shaping, Mohamed Shehata', Ke Wang', Julian Webber ³ , Masayuki Fujita ³ , Tadao Nagatsuma ³ , Withawat Withayachumnankul ¹ ; 'School of Electrical and Electronic Engineering, The Univ. of Adelaide, Australia; ² School of Engineering, Royal Melbourne Inst. of Technology, Australia; ³ Grad- uate School of Engineering Science, Osaka Univ, Japan. We propose and experimentally demonstrate a Nyquist pulse that can improve the error rate of a 311 GHz photonic-terahertz communications system by more than an order of magnitude at a normalized timing-jitter of 22.5% and 1.44 Gbit/s bit rate.		10:15–10:45, Theater III
		Th11.4 • 09:30 300-GHz-Band Wireless Link Using Photonics-Based Ultralow-Noise Transmitter and Receiver, Keisuke Maekawa', Yuma Kawmoto', Tomoya Nakashita', Toki Yoshioka', Takashi Hori', Brendan Heffernan ² , James Greenberg ² , Rubab Amin ² , Tatsuya Tanigawa ² , Antoine Rolland ² , Tadao Nagatsuma ¹ , Yosaka Unix, Japan; ² IMRA America Inc, Japan. We present a THz wireless link using photonics-based signal generators using ultralow amplitude- and phase-noise Brillouin laser sources for both the transmitter and receiver, and demonstrate successful transmission of over- 100-Gbit/s signals at 300 GHz with on-line signal processing.		
OFC Career Zone Job Fair	areer Zone, Exhibit Hall Resume Critique Workshop Iterviews	Th11.5 • 09:45 Demonstration of Wireless Transmission of QPSK Signals at 2 TH2, Isao Morohashi', Yoshihisa Irimajiri', Akira Kawakami', Tadashi Kishimoto', Pham Tien Dat', Atsushi Kanno', Norihiko Sekine', Iwao Hosako';		
	n d Show Floor, Exhibit Hall, e 10:00–10:30)	¹ National Inst of Information & Comm Tech, Japan. Wireless transmission of QPSK signals at 2 THz has been demonstrated using modulator-based optical combs for the transmitter and hot electron bolometer mixers combined with phase-locked terahertz quantum cascade lasers for the receiver.		

Exhibit Hall B1 Lunch Break (on own; concessions available in Exhibit Hall) Thursday, 9 March

10:30–12:30 Th2A • Posters Session III (In-Person)

Th2A.1

Transfer Learning-Based ROADM EDFA Wavelength Dependent Gain Prediction Using Minimized Data Collection, Zehao Wang¹, Daniel C. Kilper², Tingjun Chen¹; ¹Duke Univ., USA; ²CONNECT Centre, Ireland. We implement and test transfer learningbased gain models across 16 ROADM EDFAs, which achieve less than 0.17/0.30 dB mean absolute error for booster/pre-amplifier gain prediction using only 0.5% of the full target EDFA dataset.

Th2A.2

First Monolithically-Integrated Silicon CMOS Coherent Optical Receiver, Ghazal Movaghar¹, Viviana Arrunategui¹, Aaron Maharry¹, Evan D. Chansky¹, Junqian Liu¹, Hector Andrade¹, Clint Schow¹, James Buckwalter¹; ¹UC Santa Barbara, USA. An O-band coherent optical receiver (CORX) is integrated in a 45-nm monolithic CMOS SOI process. The CORX operates to 80 Gbps with FEC-acceptable BER at 1.2 pJ/bit energy efficiency. To our knowledge, this is the first monolithically-integrated Silicon CMOS CORX.

Th2A.3

Automatic Tuning of Vernier Microring Filters Using Comprehensive Characterization Models and Hybrid Optimization Algorithms, Saif Alnairat^{1,2}, Benjamin Wohlfeil¹, Stevan Djordjevic¹, Bernhard Schmauss², ¹ADVA Optical Networking SE, Germany; ²Inst. of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany. An efficient approach to automatically configure and tune Vernier microring filters by utilizing hybrid optimization algorithms and robust characterization models is presented. Automatic tuning of a four-ring Vernier filter over the entire C-band is experimentally demonstrated to evaluate this method.

Th2A.4

Composite Morphology Laser Written 3D Waveguides With Reduced Bend Loss, Andrew J. Ross-Adams¹, Michael Withford¹, Simon Gross¹; ¹Macquarie Univ., Australia. We demonstrate a composite laser written 3D waveguide in boro-aluminosilicate glass, with an estimated index contrast of 1.7%, providing a 2.5x improvement of minimum bend radius down to 4.0 mm at 1550 nm.

Th2A.5

Broadband High-Performance 2×2 MMI 3-dB Coupler Enabled by SWG Lateral Cladding for the Silicon-on-Insulator Platform, Luhua Xu^{2,1}, Weijia Li², Jinsong Zhang², Deng Mao², Md Samiul Alam², Yannick D'Mello², Santiago Bernal², Zixian Wei², David Plant², ICMC Microsystems, Canada; ²Department of Electrical and Computer Engineering, McGill Univ, Canada. We demonstrate a high-performance silicon photonic 2×2 MMI 3-dB coupler enabled by SWG lateral cladding. Measured imbalance below 0.3 dB and phase error below 1.83° are achieved over a 130 nm bandwidth covering the C-band.

Th2A.6

Temperature-Insensitive Pulse and 120°C CW Operation of 1550nm-Band p-Doped InAs/InGaAIAs Quantum Dot Lasers on InP(311)B Substrate, Ryota Yabuki', Atsushi Matsumoto', Ryumi Katsuhara', Siim Heinsalu', Kouichi Akahane², Yuichi Matsushima', Hiroshi Ishikawa', Katsuyuki Utaka'; 'Waseda Univ, Japan; 'National Inst. of Information and Communications Technology (NICT), Japan. We fabricated 1550nm-band, p-doped, InAs/InGaAIAs quantumdot(QD) lasers on an InP(311)B substrate. The device showed extremely high temperature stability and lasing up to 120°C was confirmed under CW condition. © 2022 Ryota Yabuki

Th2A.7

High-Power Performance of Type-II GalnAsSb/ InP Uniform Absorber Uni-Traveling Carrier Photodiodes, Rimjhim Chaudharyi, Akshay M. Arabhavi', Laurenz Kulmer', Sara Hamzeloui', Marco Eppenberger', Martin Leich', Olivier Ostinelli', Juerg Leuthold', Colombo Bolognesi'; 'ETH Zurich, Switzerland. We report the first power performance of Type-II GalnAsSb/InP UTC-PDs. The UTC-PDs attain a zero-bias output power of -14 dBm at 100 GHz, one of the highest reported for any zero-bias photodiodes.

Th2A.8

Low Insertion Loss 128-Gbaud HB-CDM With 3D-Printed Spot Size Converter Integrated InP-

Based Modulator, Yasutaka Mizuno¹, Munetaka Kurokawa¹, Naoki Itabashi¹, Taichi Misawa¹, Masaru Takechi¹, Hiroshi Uemura¹, Hajime Tanaka¹, Tautomu Ishikawa¹, Tomoya Saeki¹, Keiji Tanaka¹, Takatoshi Kato¹, Manabu Shiozaki¹, Katsumi Uesaka¹, 'Transmission Devices Laboratories, Sumitomo Electric Industries, Ltd., Japan. We demonstrate 128 Gbaud HB-CDM with InP-based modulator having 3D-printed SSCs on chip facet. Optical coupling loss of 1.1 dB and Telcordia compliant reliability promise practical usage of 3D-print technology based on two photon polymerization.

Th2A.9

Full 3-Inch Wafer Processed 1060 nm Single-Mode Transverse Coupled-Cavity VCSEL for Data Transmission in Standard 1300nm Single-Mode Fiber, Chang Ge', Boxuan Zhang', Xiaodong Gu'2, Susumu Kinoshita', Fumio Koyama'; 'Tokyo Inst. of Technology, Japan; 'Ambision Photonics, Japan. We demonstrate full-3inch-wafer processed 1060nm single-mode metal-aperture VCSEL, exhibiting 1300nm-standard single-mode fiber transmission. We obtained a bandwidth distance product of 2.5Tbps·km. The modal-intensity noise in two-modes fiber link is suppressed with mode-filters.

Th2A.10

Low Fusion Splice Loss Technique for Multicore Fiber With 2- and 3-Electrode Fusion Splicers, Toshiyuki Fujii', Masanori Takahashi', Ryuichi Sugizaki', Akio Tanabe', Yoshihiro Arashitani'; 'Furukawa Electric Co., Ltd., Japan. Splice loss of 4-core fiber using 2-electrode fusion splicer by automatic rotational alignment with duration time of 150 sec is reduced to 0.07 dB, getting closer to 0.02 dB by 3-electrode fusion splicer.

Th2A.11

Pump Optimization of E-Band Bismuth-Doped

Fiber Amplifier, Aleksandr I. Donodin¹, Egor Manuylovich¹, Vladislav Dvoyrin¹, Forysiak Wladek¹, Sergei K. Turitsyn¹; ¹Aston Univ. UK. We experimentally investigate different bi-directional pumping schemes of an E-band bismuth-doped fiber amplifier. Best performance is achieved with 1320nm pumps, and features 38.9dB gain, 4.7dB NF, and 32.6% power conversion efficiency.

Th2A.12

Nonlinear Optical Loop Mirror for Waveband-Shift Free Optical Phase Conjugation, Vladimir Gordienko', Mariia Bastamova', Andrew Ellis', Nick Doran'; / Aston Univ., UK. We introduce a novel concept for waveband-shift free optical phase conjugation and experimentally demonstrate idler-to-signal extinction ratio up to 18dB by recombining signals and idlers at different output ports of a nonlinear optical loop mirror.

Th2A.13

SINET6: Nationwide 400GE-Based Academic Backbone Network in Japan, Takashi Kurimoto¹, Koji Sasayama¹, Osamu Akashi¹, Shigeo Urushidani¹, ¹nii, Japan. This paper describes the practical network design of a newly-launched nationwide 400GE-based academic backbone network called SINET6. Its fully-meshed architecture with multi-layer network coordination, network services with on-demand capabilities, and performance evaluations are reported.

Th2A.14

Technical Study on the Viability of Hollow-Core and Ultra-Low-Loss Silica Fibres in Metro-Core Optical Networks, Md Asif Iqbal', Paul Wright', Andrew Lord'; 'British Telecommunications, UK. We numerically compare the performance benefits and viability of deploying hollow-core-fibre (HCF) and ultra-low-loss (ULL) fibre in metro-core optical network considering practical traffic growth, limitations of transceiver OSNR and output power from commercial optical amplifiers.

Th2A.15

Software-Defined, Programmable L1 Dataplane: Demonstration of Fabric Hardware Resilience Using Optical Switches, Giannis Patronas³, Dimitris Syrive lis³. Paraskevas Bakoooulos³. Prethvi Kashinkunti¹.

IIs*, Paraskevas Bakopoulos*, Prethvi Kashinkunti', Louis Capps', Nikos Argyris³, Nikos Terzenidis³, Eitan Zahavi², Luke Yeager', Elad Mentovich², Julie Bernauer'; 'NVIDIA, USA; ²NVIDIA, Israel; ³NVIDIA, Greece. We propose a programmable optical fabric design for Data Center networks that extends SDN to L1. We present experiments on our HPC/ML testbed leveraging the programmable network to automatically failover from hardware or software failures.

Th2A.16

Confidential Detection of Multiple Failures in Optical Networks: an Experimental Evaluation, Moisés F. Silva², Andrea Sgambelluri¹, Alessandro Pacini¹, Francesco Paolucci³, Andre Green², David Mascarenas³, Luca Valcarenghi¹; ¹Scuola Superiore Sant Anna di Pisa, Italy; ²Los Alamos National Laboratory, USA; ³CNIT, Italy. This paper presents a Machine Learning technique based on Principal Component Analysis (PCA) combined with telemetry data scrambling to detect multiple types of failure in optical networks while preserving data confidentiality. Experiments in an optical testbed show the effectiveness of the proposed solution.

Th2A.17

Reinforcement Learning for Provisioning OTN Leased Lines, Ashwin Gumaste¹, João Pedro¹, Harald Bock¹; ¹Infinera Corporation, USA. We discuss reinforcement learning-based strategies for provisioning OTN leased-lines including all-optical provisioning and strategic aggregation subject to stochastic traffic in metro/regional networks. We show benefit in transceiver count and reduction of OTN cross-connect capacity.

Th2A.18

An Optical Network Emulator for Testing Open-ROADM Controller and Training Students, Tianliang Zhang', Muhammad Ridwanur Rahim', Salem Blue Davidson', Brandon Hunter Grona-Gardom', Cristina Marie Kobierowski', Nathan Andrew Ellsworth', Gilles Thouenon², Christophe Betoule², Olivier Renais², Andrea Fumagalli'; 'The Univ. of Texas at Dallas, USA; 'Qrange Labs, France. The Optical Network Emulation (ONE) engine is a real-time and realistic platform for testing functionalities and FCAPS features of OpenROADM controllers. Its decentralized architecture, potential applications, and educational purposes are presented in this paper.

Th2A.19

Multi-Node Cooperative Recovery Against IP Node Failure Enabled by Flexible Optical Network, Yunxuan Li¹, Rentao Gu¹, Yuefeng Ji¹; ¹BUPT, China. We propose a multi-node cooperative recovery method against IP node failure through joint selection and flow table splitting. The recovery time saves by 89.5%, and the success rate improves by 25.6% in heavily loaded network.

Th2A.20

Real-Time 50Gb/s Upstream Transmission in TDM-PON With Class E1 Power Budget Using Ge/Si Avalanche Photodiode and Bismuth-Doped Fiber as Preampliffer, Ning Wang¹, Junwei Li¹, Dechao Zhang¹, Han Li¹, Jin Cheng², Wang Chen², Vitaly Mikhailov³, Daryl Inniss³, Yan Chen², Xiaodong Duan¹, Lirong Bai⁴, Rangchen Yu², ¹China Mobile Research Inst., China; ²SiFotonics Technologies Co., Ltd., USA; ³OFS Laboratories, USA; ⁴China Mobile Communications Corporation Group Co., Ltd., China. We experimentally demonstrate a real-time 20km transmission of 50Gb/s NRZ upstream signal in TDM-PON using a BDFA preamplifier and a Ge/Si APD receiver. The sensitivity of -27.8dBm is achieved due to the low noise figure of the BDFA.

Th2A.21

Nonlinear Phase Shift Pre-Compensation for Improved Power Budget in a 200 Gbps Simplified Coherent PON, Pablo Torres-Ferrera¹, Md Saifuddin Faruk¹, Istvan B. Kovacs¹, Seb J. Savory¹; ¹Univ. of Cambridge, UK. We experimentally investigate a simple fiber nonlinearity pre-compensation technique for 200 Gbps PON downstream using a simplified coherent receiver. A power budget improvement of 1.0 dB is achieved for 50 km reach in C-band.

Exhibit Hall B1

Th2A • Posters Session III (In-Person)—Continued

Th2A.22

Device Engineering and Performance Optimization

of Silicon PICs for 800Gb/s Coherent Transmission, Hao Wu¹, Chen Zhu², Ning Cheng¹, Chenlei Li¹, Min Teng¹, Pan Su¹, Feng Wang¹, Yinchao Du¹, Gang Cheng², Xuezhe Zheng¹, ¹Innolight Technology Research Inst. (ITRI), InnoLight Technology (Suzhou) Ltd., China; ²Network Infrastructure Departmert, Baidu, China: An end-to-end link model is developed to optimize silicon PIC and evaluate the coherent system performance. 128Gbaud 16-QAM data transmission based on silicon photonics is achieved with -9.1dBm Tx-output power and 26dB Rx OSNR sensitivity.

Th2A.23

Maximizing 425G SWDM VCSEL-MMF Systems Reach Through Variable Rate per A, Ann Margareth Rosa Brusin¹, Antonino Nespola², Giuseppe Rizzelli², Francesco Aquilino², Fabrizio Forghieri³, Andrea Carena¹; ¹Politecnico di Torino, Italy; ²UINKS Foundation, Italy; ³Cisco Photonics srl, Italy. We demonstrate the maximization of reach for 425G SWDM systems based on VCSEL-MMF links through variable rate solutions, reaching up to >100 m for 99% of tested links.

Th2A.24

Polarization Mode Dispersion in CMOS-Integrated Monolithic SiPh Components: Simulations and Experiments, Yusheng Bian'; 'GLOBALFOUNDRIES, USA. We simulated and experimentally characterized the differential group delay induced from polarization mode dispersion (PMD) of key components on a monolithic SiPh platform. Strategy for compensating PMD was introduced for high-speed applications beyond 100 Gbit/s.

Th2A.25

systems.

Adaptive Log-Likelihood-Ratio for Optical Channels With Non-Additive-White-Gaussian-Noise, Chunpo Pan', Xuefeng Tang', Meng Ciu', Tianyu Zhao', Wenjing Chen', Chuandong Li', Zhuhong Zhang', 'Huawei Technologies Canada Co., Ltd., Canada; ²Huawei Technologies Co., Ltd., China. An adaptive LIR calculation algorithm is proposed for non-additivewhite-Gaussian-noise (non-AWGN) optical channels. The noise distribution is continuously updated based on previous decisions. The performance is tested experimentally using 16-QAM and soft-DQPSK

Th2A.26 Adaptive Turbo Fr

Adaptive Turbo Equalization of Probabilistically Shaped Constellations, Edson Porto da Silva¹, Metodi Plamenov Yankov²; ¹Universidade Federal de Campina Grande, Brazil; ²DTU Electro, Technical Univ. of Denmark, Denmark, Fiber nonlinearity compensation of probabilistically shaped constellations with adaptive turbo equalization is investigated for the first time. Potential for more than 100% transmission reach extension is demonstrated by combining probabilistic shaping, single-channel digital backpropagation, and adaptive turbo equalization.

Th2A.27

SOA-Amplified 100 Gbit/s/\ PAM-8 WDM Transmission for Optical Access Networks Enabled by Probabilistic Shaping, Marcos Troncoso Costas^{1,2}, Ahmed Galib Reza¹, Colm Browning¹, Francisco Diaz Otero², Liam Barry¹; ¹Dublin City Univ, Ireland; ²Univ. of Vigo, Spain. We demonstrate a 4-channel SOA-amplified 100 Gbit/s/\ probabilistically shaped PAM-8 C-band transmission for next-generation optical access networks. Power budgets up to 30.25 dB were obtained using T-spaced equalization on a 20-GHz bandwidth-limited system.

Th2A.28

Inter-Core Crosstalk Sense-and-Compensate for Multi-Core Fiber Transmission With CAZA Training Sequence, Chen Cheng', Can Zhao', Junda Chen', Weihao Li', Maoqi Zhang', Ming-Ming Zhang', Yizhao Chen', Zihe Hu', Jiajun Zhou', Ming Tang', 'Huazhong Univ. of Science and tech., China, 'Panjing Univ., China. We demonstrate a novel inter-core crosstalk sense-and-compensate method with the CAZAC sequence as the frame header in the crosstalk-limited IMDD SDM system, achieving 2.5 dB sensitivity improvement and ensuring the quality of transmission.

Th2A.29

Disaggregated SCI Estimation for QoT-E in Mixed Fibers Network Segments, Emanuele E. Virgillito¹, Andrea Castoldi², Andrea D'Amico¹, Stefano Straullu³, Rudi Bratovich², Fransisco Martinez Rodriguez², Andrea Bovio², Rosanna Pastorelli⁷, Vittorio Curri¹; ¹Politecnico di Torino, Italy; ²SM-Optics, Italy; ³UIN/S Foundation, Italy. We propose a spatially disaggregated model for self-channel noise coherent buildup in mixed fibers lines including dispersion compensated spans. We show that propedy modeling coherence is crucial for accurate GSNR estimation.

Th2A.30

Upgrade of Deep Neural Network-Based Optical Monitors by Communication-Efficient Federated Learning, Takahito Tanimura', Masayuki Takase'; 'Irlitachi Itd., Japan. We present an efficient scheme to upgrade DNN-based optical monitors collaboratively trained through multiple network operators without revealing each confidential data, applying federated learning with pre-model size reduction based on transferable lottery ticket hypothesis.

Th2A.31

On the Advantages of Principal Modes for Multimode SDM Transmission Systems, Fabio A. Barbosa¹, Filipe Ferreira¹; ¹Univ. College London, UK. MISO array size is shown to scale sublinearly with an increasing number of tributaries under modal dynamics and mode-dependent loss with up to 330 principal modes over a fibre optimised for low modal dispersion.

Th2A.32

NR Conformance Testing of Analog Radio-Over-LWIR FSO Fronthaul Link for 6G Distributed MIMO Networks, Rafael Puerta^{1,2}, Mengyao Han^{2,7}, Mahdieh Joharifar², Richard Schatz², Yan-Ting Sun², Yuchuan Fan^{2,3}, Anders Djupsjobacka³, Grégory Maisons⁴, Johan Abautret⁴, Roland Teissier⁴, Lu Zhang⁵, Sandis Spolitis⁶, Muguang Wang⁷, Vjačeslavs Bobrovs⁶, Sebastian Lourdudoss², Xianbin Yu⁵, Sergei Popov², Oskars Ozolins^{2,3}, Xiaodan Pang^{2,3}; ¹Ericsson Research, Sweden; ²KTH Royal Inst. of Technology, Sweden: ³RISE Research Inst.s of Sweden, Sweden: ⁴mirSense, France: ⁵Zheijang Univ., China: ⁶Riga Technical Univ., Latvia; 7Beijing Jiaotong Univ., China. We experimentally test the compliance with 5G/NR 3GPP technical specifications of an analog radio-over-FSO link at 9 µm. The ACLR and EVM transmitter requirements are fulfilled validating the suitability of LWIR FSO for 6G fronthaul.

Th2A.33

Phase Locking of an Optical Injection Phase-Lock Loop Coherent Receiver Under Emulated Atmospheric Fading Conditions, Alexis Bernini¹, Martyn J. Fice¹, Katarzyna Balakier¹; ¹Department of Electronic and Electrical Engineering, Univ. College London (UCL), UK. An Optical Injection Phase-Lock Loop coherent receiver has been tested against various levels of deep atmospheric fading to experimentally evaluate its feasibility in a ground-to-satellite optical communications application.

Th2A.34

Improving the Performance of Variable Data Rate Architectures for Optical LEO Direct-to-Earth Links, Bertold lan Bitachon¹, Michael Baumann¹, Johannes Widmer², Michal Kuklewski², Hannah Lindberg², Mathieu Berges², Juerg Leuthold¹, ¹ETH Zurich, Switzerland; ²Thales Alenia Space, Thales Alenia Space, Toulouse, Midi-Pyrénées, FR, corporate/aero, Switzerland. Usage of new spreading factors is shown to improve the rate granularity, performance and photon efficiency of variable data rate architectures intended for optical low earth orbits to earth links.

Th2A.35

Experimental Evaluation of MPI Noise Mitigation Effects for Various Modulation Schemes in Analog IFoF-Based Mobile Fronthaul Link, Hirotaka Ochi¹, Kazuki Tanaka¹, Shinji Nimura¹, Kosuke Nishimura¹, Ryo Inohara¹, Masatoshi Suzuki¹; ¹KDDI Research, Inc., Japan. Effects of multipath interference (MPI)

mitigation for different modulation schemes in analog IFoF link is experimentally evaluated. The results show phase-dithered and polarization-scrambled IFoF signal could tolerate 30-dB MPI for two types of external modulations.

Th2A.36

Photon-Pair Generation From two Silicon Micro-Rings Using the Recycled Optical Power From a Contra-Directional Pump-Reject Filter, Abdelrahman Afifi¹, Andreas Pfenning², Sudip Shekhar¹, Lukas Chrostowski¹², Jeff F. Young^{3,2}, ¹Electrical and Computer Engineering, Univ. of British Columbia, Canada; ³Stewart Blusson Quantum Matter Inst., Univ. of British Columbia, Canada; ³Department of Physics and Astronomy, Univ. of British Columbia, Canada. Two micro-ring resonators are integrated with two contra-directional pump-reject filters in a pumpreuse configuration showing a 55% increase in the coincidence counts from both sources compared to a single source at 1mW input pump power.

Th2A.37

Towards Optimized Demand Routing in QKD

Networks, Mario Wenning^{1,2}, Sai K. Patri^{1,2}, Jasper Mueller^{1,2}, Achim Autenrieth¹, Joerg-Peter Elbers¹, Piotr Rydlichowski³, Carmen Mas Machuca²; ¹ADVA Optical Networking SE, Germany; ²Chair of Communication Networks, Technical Univ. of Munich, Germany; ³PSNC, Poland. We investigate bufferaware demand-routing of key-consumption demands in QKD networks and implement a measurementbased framework for path selection. The proposed ML-based algorithm outperforms state-of-the-art heuristics by 22 % and 92 % for networks under test. Show Floor Programming

MW5 • MW Panel V: Perspectives on the Future of ROADM Technologies and Architectures for Next-Gen Networks 10:30–12:00

SF11 • AIM Photonics and the Next PIC Generation 11:00–12:00, Theater II

OFCnet Emerging Technologies 11:00–11:30, *Theater III*

MW6 • MW Panel VI: Satellite Communications - Coherent Optics in Free Space 12:15–13:45, Theater I

SF12 • OIF: Enabling Next Generation Co-Packaging Solutions 12:15–13:15, Theater II

12:30–14:00 Unopposed Exhibit-only Time, Exhibit Hall

13:00–14:00 Personal Branding for Social Media Workshop, OFC Career Zone, Exhibit Hall

Room 1AB

14:00-16:00 Th3A • Novel Enabling Devices Presider: To be announced.

Th3A.1 • 14:00 Invited

Micro-Transfer Printing for Silicon Photonics, Gunther Roelkens1: 1Ghent Univ. - imec, Belgium. We describe our work on heterogeneous photonic integrated circuits realized using micro-transfer printing. a versatile integration approach for the integration of III-V semiconductors, LiNbO3 and silicon photonic/electronic chiplets on Si/SiN photonic integrated circuits.

14:00-16:00 Th3B • Silicon Photonics **Devices and Integrated** Circuits Presider: Hai-Feng Liu; HG Genuine Optics Tech Co Ltd,

Room 2

Th3B.1 • 14:00 Invited

Th3B.2 • 14:30 Invited

Ultrahigh-Speed Silicon-Based Modula-

tors/Photodetectors for Optical Intercon-

nects, Xiao Hu¹, Dingyi Wu¹, Hongguang

Zhang¹, Daigao Chen¹, Lei Wang¹, Xi Xiao¹,

Shaohua Yu¹; ¹Nat Optoelectronics Innova-

tion Center, China. We present our recent

progress on the silicon photonic devices

for next-generation optical interconnects.

The 300 Gbit/s silicon microring modulator,

200 Gbit/s Ge EAM and 408 Gbit/s GeSi

photodetectors with the highest bandwidth

of 110 GHz are presented. Single-chip 1.6

Tbit/s silicon-based optical transceiver is

also demonstrated.

USA

Silicon Photonics for Next-Generation Optical Connectivity, Ling Liao¹, Saeed Fathololoumi¹, Kimchau Nguyen¹, Hari Mahalingam¹, David Hui¹, John Heck¹, Harel Frish¹, Reece Defrees¹, Christian Malouin¹, Pegah Seddighian¹, Mengyuan Huang¹, Kadhair Al-hemyari¹, Yen-Jung Chen¹, Ye Wang¹, Thomas Liljeberg¹; ¹Intel Corp., USA. We review advancements in silicon photonic (SiPh) devices and integrated circuits (SiPICs) to enable high density, low power, multi-Tb/s optical solutions for next-generation Ethernet networking and compute connectivity.

14:00-16:00 Th3C • Doped Fiber Amplifiers Presider: Hidehisa Tazawa: Sumitomo Electric Industries Ltd, Japan

Room 3

Th3C.1 • 14:00 Top-Scored 1255-1355 nm (17.6 THz) Bandwidth O-Band Bismuth Doped Fiber Amplifier Pumped Using Uncooled Multimode (MM) 915 nm Laser Diode, Vitaly Mikhailov1, Yingzhi Sun¹, Jiawei Luo¹, Faroog Khan¹, Daryl Inniss¹, Yuriy Dulashko¹, Mark Lee¹, Joel Mann¹, Robert S, Windeler¹, Paul Westbrook¹, Jeffrey W. Nicholson¹, David J. DiGiovanni¹; ¹OFS Laboratories, USA. We report BDFA with >20 dB gain over 1255-1355 nm bandwidth (17.6 THz) with maximum gain of 29.3 dB and corresponding NF of 4.6 dB (λ=1300 nm, Pin=-20 dBm). The BDFA has electrical power consumption of 8.1-9.6 W over 20-70 C

Th3C.2 • 14:15 A Highly Temperature-Insensitive Bi-Doped Fiber Amplifier in the E+S-Band With 20 dB Flat Gain From 1435-1475 nm, Yu Wang¹, Arindam Halder¹, David J. Richardson¹, Jayanta K. Sahu¹; ¹Univ. of Southampton, UK. We report a bismuthdoped fiber amplifier operating in the E+Sband providing a 20.5±1dB flat gain with 5.5±2dB NF from 1435-1475nm for -10dBm input signal. The gain coefficient and temperature-dependent-gain coefficient are 0.065dB/mW and -0.005±0.001dB/°C, respectively.

Th3A.2 • 14:30

27 Hz Integral Linewidth Laser Based on a 5-Billion Q Microfabricated Reference Cavity, Andrei Isichenko¹, Flame Feng¹, Naijun Jin², Kaikai Liu¹, Mark W. Harrington¹, Peter Rakich², Daniel J. Blumenthal¹; ¹Department of Electrical and Computer Engineering, UC Santa Barbara., USA; ²Department of Applied Physics, Yale Univ., USA. We stabilize a semiconductor laser to a manufacturable, microfabricated micro-Fabry-Perot dielectric reference cavity of 5 billion quality factor, achieving thermorefractive-noise-limited performance. A 27 Hz 1/pi integral linewidth and 1.5×10⁻¹³ fractional frequency stability are measured.

Th3C.3 • 14:30

Bandwidth-Dependent Gain Deviation in E+S Band Bismuth Doped Fiber Amplifier Under Automatic Gain Control, Lixian Wang¹, Yiki Fung¹, Sharma Manish¹, Corentin Botzung², Sophie LaRochelle², Zhiping Jiang¹; ¹Huawei Technologies Canada, Canada; ²Université Laval, Canada. Although bismuth doped fiber amplifier could provide ultra-wideband gain, the gain inhomogeneity might ultimately restrict its applicable bandwidth. This work explores this limitation through experimental measurements of signal dependent gain deformation

OFC 2023 • 05–09 March 2023

Room 6C

14:00-16:00 Th3D • Advances in Data Center Switching and Interconnects Presider: To be announced.

Th3D.1 • 14:00 Invited

X-NEST+: a High Bandwidth and Reconfigurable Optical Interconnects for Distributed Machine Learning and High- Performance Computing, Huaxi Gu¹, Xiaoshan Yu¹, Yunfeng Lu¹, Hong Zou¹, Shuo Li¹: ¹Xidian Univ., China, We propose X-NEST+, a scalable and highbandwidth optical interconnects capable of reconfiguring both intra- and inter- cluster topology based on traffic demands. The experiment results indicate up to 8%~36% reduction in completion time for HPC and ML applications compared with Helios and RotorNet.

Th3E.2 • 14:15 Invited

Probabilistic Shaping Methods for Linear and Nonlinear Channels, Stella Civelli1,2, Enrico Forestieri^{1,2}, Marco Secondini^{1,2}; ¹Scuola Superiore Sant Anna di Pisa, Italy; ²PNTLab, CNIT, Italy. The main methods and achievements regarding probabilistic shaping are reviewed, highlighting the primary difficulties and opportunities.

Th3D.2 • 14:30 Jitter Compensation Mechanism for Dy-

namic Deterministic Networks, Guillaume Soudais^{2,1}, Tarik Graba¹, Yves Mathieu¹. Sébastien Bigo²; ¹Telecom Paris, France; ²Nokia Bell Labs, France. We compensate jitter between any two unsynchronized endpoints by tracking their clocks and recreating flows by retiming packets. After implementation over FPGA, we achieve ~10ms synchronization setup time with no more than 70ns jitter.

Room 6D

14:00-16:00 Th3E • Modulation Formats Presider: David Millar: Infinera Corporation, USA

Th3E.1 • 14:00

Revisiting Probabilistic Constellation Shaping in Unamplified Coherent Optical Links, Beatriz Manata de Oliveira¹, Jorge Silva¹, Manuel Neves¹, Fernando Guiomar¹, Maria do Carmo Medeiros³, Paulo Monteiro²; ¹Instituto de Telecomunicações, Portugal; ²Universidade de Aveiro, Portugal; ³Universidade de Coimbra, Portugal. Considering an unamplified 400ZR-compatible system, we experimentally demonstrate that the reverse Maxwell-Boltzmann distribution significantly enhances PCS performance. With bit-rate adaptation down to 250 Gbps, we find power budget gains of more than 2 dB.

14:00-16:00

Room 6E

Th3F • Wideband **Transmission Systems** Presider: Fatima Garcia Gunning; Tyndall National Inst., Ireland

Th3F.1 • 14:00 Invited

Practical Fiber Considerations for High Capacity Systems: From Campus to Long Haul, Roshene McCool¹; ¹Corning Optical Communications, Germany, The challenges and opportunities for optical fibers in highcapacity systems from Campus to Long-Haul is discussed. System enhancements can be delivered by constrained fiber zero-dispersion wavelengths, increased fiber bend resilience and reduced fiber outer diameter

116

Room 6F	Room 7AB	Room 8	Room 9
14:00–15:45 Th3G • High Data-Rate Direct Detection in Access Presider: Yuanqiu Luo; FutureWei Technologies Inc, USA	14:00–16:00 Th3I • Panel: Roadmap for Photonic Al Accelerators Organizers: Glenn Bartolini, Coherent Corp, USA; Nikos Pleros, Aristotle University of Thessaloniki, Greece; Volker Sorger, George Washington University, USA; Xian Xiao, Hewlett Packard Labs, USA	14:00–15:45 Th3H • Free Space and Optical Camera Communications Presider: Eduward Tangdiongga; Technische Universiteit Eindhoven, Netherlands	14:00–16:00 Th3J • Advanced Control in Quantum Systems Presider: To be announced.
Th3G.1 • 14:00 Real-Time 400 Gbit/s PAM-4 Optical Link Over 30 km for Future Access Network, Jeremy Potet ^{1,2} , Mathilde Gay ² , Laurent Bramerie ² , Fabienne Saliou ¹ , Gaël Simon ¹ , Philippe Chanclou ¹ , Monique Thual ² ; ¹ Orange, France; ² Univ Rennes, CNRS, Institut FO- TON, France. We experimentally demonstrate a 4λ WDM real-time 100 Gbit/s/λ PAM-4 fiber link supporting 30 km of fiber propagation and 23.5 dB supported channel insertion losses using analog pre-equalization and common semiconductor based optical pre-amplification.	Speakers: Darius Bunandar, Lightmatter, USA; Hamed Dalir, University of California, Los Angeles, USA; Jo- hannes Feldmann, Salience Labs, UK; Bahram Jalali, University of California, Los Angeles, USA: Francesca Parmigianni, Microsoft Research Cambridge, UK Description: In addition to the known high-bandwidth benefit, photonics offers two key functionalities with relevance to Al accelerators for machine learning, namely, multiplication and accumulation such as en- abled via, for example, modulators and photodetec- tors, respectively. However, photonics is challenged to provide end-to-end neural network solutions reflected by the challenge of a nonlinear activation function leading to OEO conversions. This channels	Th3H.1 • 14:00 Demonstration of "Automatic" Turbulence Mitiga- tion of 4 QPSK Channels in a Self-Coherent Free- Space Mode-Division-Multiplexed Link Using a Pilot Beam and Photodetector Array, Huibin Zhou', Hao Song', Xinzhou Su', Yuxiang Duan', Kaiheng Zou', Runzhou Zhang', Moshe Tur ² , Alan Willner'; 'Unix. of Southern California, USA; ² School of Electrical Engineering, Tel Aviv Univ., Israel. We experimentally demonstrate "automatic" turbulence mitigation of a self-coherent FSO MDM link with four 1-Gbaud QPSK channels using a transmitted pilot beam and PD array without power-splitting losses or detector- bandwidth sharing. Results show <3-dB turbulence- induced penalty, compared to a >16-dB penalty for	Th3J.1 • 14:00 Invited Benchmarking of Scalable Photonic Quantum Systems, Christine Silberhorn'; 'Department Phys ics, Inst. of Photonic Quantum Systems (PhQS) Paderborn Univ., Germany. Scaling photonic quantum simulations and computations requirer many controllable modes and input states with many photons. Here we review different approaches fo the experimental implementation of future multi dimensional photonic quantum systems.
Th3G.2 • 14:15 Withdrawn	realisations of deep neural network architectures in the optical domain requiring electronics introducing parasitic conversions. In addition optical accelerators being analog compute engines may require (depend-	a conventional LO-based MDM system.	
Th3G.3 • 14:15 Uncooled High Speed Ge/Si Avalanche Photodiode for 50 Gbit/s-PON With 60 km Reach, Jeremy Potet ^{1,2} , Gaël Simon ¹ , Georges Gaillard ¹ , Camille Des- semond ¹ , Fabienne Saliou ¹ , Mathilde Gay ² , Philippe Chanclou ¹ ; ¹ Orange, France; ² Univ Rennes, CNRS,	In the application) digital-to-analog domain crossing which is expensive. In this panel we will review the state-of-the-art in photonic AI accelerators and will project challenges and solutions into the future for photonic and hybrid	Th3H.2 • 14:15 Net 1 Tbps Multi-User Indoor FSO Downlink Over 25 m Based on Cost-Effective Point-to-Multipoint Coherent Optics and Probabilistic Shaping, chen cheng ^{1,2} , Xueyang Li ¹ , Yongchao Jin ² , Zhixue He ¹ , Yanfu Yang ^{1,2} , Weisheng Hu ¹ , ¹ Peng Cheng Labora-	
Institut FOTON, France. A high-speed germanium on silicon APD is demonstrated for DSP-free 50G-PONs. Sensitivities of -24 dBm at 58.2 Gbit/s and -26.5 dBm	accelerators for AI and machine intelligence. Here our perspective is open to application spaces in network edge AI and to machine learning training in the cloud.	tory, China; ² Harbin Inst. of Technology, China. We demonstrate a cost-effective point-to-multipoint free-space optical downlink using digital subcarriers	

Th3G.4 • 14:30

to 80°C.

A Simple 25 and 12.5 Gb/s Dual-Rate Burst-Mode Receiver Compliant With ITU-T G.9804.3 N1-Class, Hayato Suga¹, Takanori Kawanaka¹, Satoshi Yoshima¹, Satoshi Shirai¹; ¹Mitsubishi Electric, Japan. Our simple dual-rate burst-mode receiver in a TO-46 package is compliant with the 50G-PON N1-class specifications. Receiver sensitivities of -26.5dBm and -27.8dBm were achieved for 25 and 12.5 Gb/s signals with 200ns preamble length.

at 50 Gbit/s over 60 km of fiber are experimentally

obtained in real time with temperature from -40°C

and achieve an aggregated net data rate beyond 1

Tbps over 25 m with 8 edge nodes while meeting the

Experimental Demonstration of a 96 Channel

WDM-FSO System Based Mobile Fronthaul With

1024QAM Delta-Sigma-Modulation, Kaihui Wang¹,

Bowen Zhu¹, Yi Wei¹, Chen Wang¹, Wen Zhou¹, Li

Zhao1, Yun Chen1, Xianmin Zhao2, Jianjun Yu1; 1Fu-

dan Univ., China; ²Harbin Inst. of Technology, China.

For the first time, we experimentally demonstrate

a 96-Channel WDM-FSO mobile fronthaul system,

which can support 7.68Tbit/s PDM-OFDM-1024QAM

signals delivery over 2-km SMF and 104m FSO link with the aid of 1-bit delta-sigma modulation.

eye-safety standard.

Th3H.3 • 14:30

Th3J.2 • 14:30

Machine Learning Based Joint Polarization and Phase Compensation for CV-QKD, Hou-Man Chin¹, Adnan Hajomer¹, Nitin Jain¹, Ulrik L. Andersen¹, Tobias

Gehring¹; ¹Technical Univ. of Denmark, Denmark. We investigated a machine learning method for joint estimation of polarization and phase for use in a Gaussian modulated CV-QKD system, over an 18 hour period measured on a installed fiber with 5.5 dB attenuation.

SF13 • IPEC: IPEC Overview of **Optoelectronic Technology and** Industry Standards in the Cloud Era 13:30-14:30, Theater II

SF14 • MOPA: Mobile Optics (MOPA) for the 6G Era 13:30-15:00, Theater III

Cisco Sponsored Session 14:00-14:30

	Room 1AB	Room 2	Room 3	Room 6C	Room 6D	Room 6E
	Th3A • Novel Enabling Devices—Continued	Th3B • Silicon Photonics Devices and Integrated Circuits—Continued	Th3C • Doped Fiber Amplifiers—Continued	Th3D • Advances in Data Center Switching and Interconnects—Continued	Th3E • Modulation Formats—Continued	Th3F • Wideband Transmission Systems— Continued
	Th3A.3 • 14:45 Low-Loss Wide-FSR Miniaturized Race- track Style Microring Filters for ≥1 Tbps DWDM, Asher S. Novick', Kaylx Jang', Anthony Rizzo', Robert Parsons', Keren Bergman', 'Columbia Univ., USA. We demonstrate add-drop microring filters based on 180° varied-width hybrid Euler bends, suitable for supporting >Tbps DWDM. We measure FSR>40nm, 0.64nm/ mW thermal tuning efficiency, and IL _{eff} ≤ 0.02dB across the C- and L-bands		Th3C.4 • 14:45 Record Gain of 18-dB for Broadband Single-Model Cr-Doped Crystalline Core Fiber by Small Core Diameter, Kai-Chieh Chang', Chia-Ling Tsai', Wei-Chih Cheng ² , Zon Ma ³ , Liu Chun-Nien ³ , Tien-Tsorng Shih ⁴ , Sheng-Lung Huang ¹ , Wood-Hi Cheng ² ; 'Graduate Inst. of Photonics and Optoelectronics, National Taiwan Univ., Taiwan; ² Graduate Inst. of Optoelectronic Engineering, National Chung Hsing Univ., Taiwan; ² Department of Electronic Engineer- ing, National Chung Hsing Univ., Taiwan; ³ Department of Electronic Engineer- ing, National Chung Hsing Univ., Taiwan; ⁴ Department of Electronic Engineer- ing, National Kaohsiung Univ. of Applied Sci- ences, Taiwan. We demonstrate record gain of 18-dB broadband single-mode Cr-doped crystalline core fiber employing small core diameter. The gain-per-unit- length is 90 dB/m, which is higher than currently achieved Er and Bi-doped fibers of 0.6 - 3 dB/m.	Th3D.3 • 14:45 Scalability Assessment of O-Band SOA- Based Broadcast and Select Switch With 100Gb/s LWDM Commercial Transceiv- ers, Marijn Rombouts', Nicola Calabretta'; 'Eindhowen Univ. of Technology, Nether- lands. Scalability and operation of O-band SOA-based Broadcast & Select switches are experimentally assessed using 100Gb/s commercial transceivers. Results show error-free operation for a 32-port switch with <1.8dB power penalty and 10^-8 for a 64-port switch.	Th3E.3 • 14:45 Geometric Constellation Shaping With Low-Complexity Demappers for Wiener Phase-Noise Channels, Andrej Rode', Laurent Schmalen'; <i>'Karlsruhe Inst. of Tech-</i> nology, Germany, We show that separating the in-phase and quadrature component in optimized, machine-learning based demappers of optical communications systems with geometric constellation shaping reduces the required computational complexity whilst retaining their good performance.	Th3F.3 • 14:45 38.4-Tbps Inline-Amplified Transmission Using PPLN-Based Optical Parametric Amplifier Over 6 THz Within L- and U-Bands, Shimpei Shimizu ¹ , Takayuki Ko- bayash ¹¹ , Akira Kawai ¹ , Takushi Kazama ¹² , Masanori Nakamura ¹ , Koji Enbutsu ² , Takashi Kato ³ , Yu Tanaka ³ , Takushi Hoshida ³ ; ¹ NIT Network Innovation Laboratories, NTT Corporation, Japan; ² NTT Device Technol- ogy Laboratories, NTT Corporation, Japan; ³ Fujitsu Limited, Japan. We demonstrate a 5×80-km WDM transmission over 6 THz within 1597.19–1649.93 nm. PPLN-based optical parametric amplifies provide sufficient gain for inline amplification of 60-channel 640-Gbps/A signals allocated in L- and U-bands.
	Th3A.4 • 15:00 Dispersion-Engineered and Fabrica- tion-Robust SOI Waveguides for Ultra- Broadband DWDM, Yuyang Wang', Songli Wang', Asher S. Novick', Aneek E. James', Robert Parsons', Anthony Rizzo', Keren Bergman'; 'Columbia Univ., USA. We present a measurement-validated design methodology for engineering the width of silicon-on-insulator waveguides for co-optimized group velocity dispersion and fabrication robustness, paving the way for ultra-broadband dense wavelength- division multiplexing silicon photonic communication solutions.	Th3B.3 • 15:00 Invited Foundry's Perspective on Laser and SOA Module Integration With Si-Photonics, Chao Li ¹ , Feng Gao ¹ , James You Sian Tan ¹ , Guo-Qiang Lo ¹ ; 'Advanced Micro Foundry, Singapore. An effective solution to integrating light source onto silicon photonics platform would be highly useful. Here, we discuss the integration solutions (i.e., hetero-epitaxial, heterogeneous and hybrid integration) and present foundry's perspective toward implementing of such.	Th3C.5 • 15:00 Erbium-Doped Fiber Amplifier With Extended L-Band Gain to 1625 nm, Ziwei Zhai', Arindam Halder', Jayanta K. Sahu'; 'Univ. of Southampton, UK. We report a double-pass L-band erbium-doped fiber amplifier providing ≥20dB gain from 1565-1625nm, with 46dB maximum gain at 1600nm. At 1625nm, the NF, OSNR, gain coefficient, and temperature- dependent-gain-coefficient were 7.2dB, 25dB, 0.045dB/mW, and -0.037dB/°C, respectively.	Th3D.4 • 15:00 Invited Programmable Photonic Neural Networks for Advanced Machine Learning Tasks, Angelina Totovic ^{2,1} , Apostolos Tsakyridis ¹ , George Giamougiannis ¹ , Mitidais Moralis- Pegios ¹ , Anastasios Tefas ¹ , Nikos Pleros ¹ ; ¹ Department of Informatics, Aristotle Univ. of Thessaloniki, Greece; ² Celestial AI, USA. Photonics holds the promise of reshaping Machine Learning and High-Performance Computing hardware landscape, stripping it of unnecessary signal conversion overhead, complying with strict power dissipation en- velopes while unlocking unrivaled compute and bandwidth capacity.	Th3E.4 • 15:00 Mode Vector Modulation: Optimal Signal Sets With Signal Shaping, Ioannis Roudas ¹ , Eric R. Fink ² , Jaroslaw Kwapisz ² ; 'Electrical and Computer Engineering, Montana State Univ., USA, '2Mathematical Sciences, Montana State Univ., USA, Formode vector modulation, used in conjunction with direct-detection, we present geometrically- optimized signal sets that correspond to the densest sphere packing in the generalized Stokes space. We show that the best trade- off between spectral and energy efficiency occurs for simplex constellations.	Th3F.4 • 15:00 Modeling and Optimization of Experimen- tal S+C+L WDM Coherent Transmission System, Salma Escobar Landero', Xiaohui Zhao', Abel Lorences-Riesgo', Dylan Le Gac', Yann Frignac', Gabriel Charlet'; 'Huawei Technologies France, France. Using accurate ISRS GN modeling and the fast- converging ASE-NL optimization algorithm, we demonstrate 6.2 Tbit/s throughput improvement in a 2-span ultra-wide-band system thanks to the use of the predicted total and per channel power.
Thursday, 9 March	Th3A.5 • 15:15 Universal CMOS-Foundry Compatible Platform for Ultra-Low Loss SOI Wave- guide Bends, Kaylx Jang', Asher S. Novick', Anthony Rizzo', Keren Bergman'; 'Columbia Univ., USA. We report a universal, foundry- agnostic, broadband, and ultra low-loss platform for SOI waveguide bends using fully-parameterized, varying-width, hybrid- Euler geometry. We measure record R = 1.75 μm IL of 0.0055 dB/180 at 1550 nm		Th3C.6 • 15:15 Self-Compensation of Spectral Hole Burn- ing Effect in Super C-Band EDFA, Lixian Wang', Yang Lan', Sharma Manish', Xiaolei Peng', Zhiping Jiang'; 'Huawei Technolo- gies Canada, Canada. This work investigates theoretically and experimentally the physical counterpart to the conventional spectral hole burning effect in erbium-doped fiber amplifiers: the inhomogeneous saturable absorption. Using this effect, a cost-effective compensation method is proposed.		Th3E.5 • 15:15 Top-Scored Practical Implementation of Sequence Selection for Nonlinear Probabilistic Shaping, Stella Civelli ^{1,2} , Enrico Forestier ^{1,2} , Marco Secondini ^{1,2} ; ¹ Scuola Superiore Sant Anna di Pisa, Italy; ² PNTLab, CNIT, Italy. We propose two novel techniques to implement sequence selection (SS) for fiber nonlinearity mitigation, demonstrating a nonlinear shaping gain of 0.24 bits/s/Hz, just 0.1 bits/s/Hz below the SS capacity lower bound.	Th3F.5 • 15:15 Coherent O-Band Transmission of 4×25 GBd DP-16QAM Channels Over a 50 km BDFA-Equipped Link, Natsupa Taengnoi ¹ , Kyle Bottrill ¹ , Yang Hong ^{2,1} , Yu Wang ¹ , Jayanta K. Sahu ¹ , Lajos Hanzo ³ , David J. Richardson ¹ , Periklis Petropoulos ¹ ; ¹ Opto- electronics Research Centre, UK; ² Nokia Bell Labs, France; ³ School of Electronics and Computer Science, Univ. of South- ampton, UK. The first WDM O-band coherent transmission experiment in a BDFA-amplified link is reported. Four 25 GBd DP-16QAM channels (4×200 Gb/s) are transmitted over 50km of fiber, occupying a bandwidth of 4.7 THz.
118			OFC 2023 • 0	5–09 March 2023		

Room 6F	Room 7AB	Room 8	Room 9	Show Floor Programming
Th3G • High Data-Rate Direct Detection in Access—Continued	Th3I • Panel: Roadmap for Photonic Al Accelerators—Continued	Th3H • Free Space and Optical Camera Communications— Continued Th3H.4 • 14:45 Experimental Demonstration of All-Optical 8-Gbit/s Secure Free-Space Chaotic Communications Over 8.2-Meter Link Based on Undirectional Injection- Locking Chaos Synchronization, Yiqun Zhang ^{1,2} , Mingfeng Xu ^{1,3} , Qiang Chenl ^{4,4} , Mengjie Zhou ^{5,} , Shuangcheng Chen ^{5,4} , Mingbo Pu ^{1,3} , Ning Jiang ² , Kun Qiu ² , Martin Lavery ⁶ , Hasan Abbas ⁶ , Xiangang Luo ^{1,4} , 'State Key Laboratory of Optical Technolo- gies on Nano-Fabrication and Micro-Engineering, Inst. of Optics and Electronics, Chinese Academy of Sciences, China; ⁵ School of Information and Com- munication Engineering, Univ. of Electronic Science and Technology of China, China; ³ Chool of Op- totelectronics, Univ. of Chinese Academy of Sciences, China; ⁵ Tianfu Xinglong Lake Laboratory, China; ⁴ James Watt School of Engineering, Univ. of Glasgow, UK. We first experimentally demonstrate an 8-Gbit/s fover 8.2 meters in a long corridor with satisfactory BER performance by achieving one-way injection locking chaos synchronization.	Th3J • Advanced Control in Guantum Systems—Continued	SF14 • MOPA: Mobile Optics (MOPA) for the 6G Era 13:30–15:00, Theater III SF15 • 3D Sensing in High Volume Consumer and Automotive Applications 14:45–15:45, Theater I SF16 • F5G Update: The Second Release of Use Cases and Demonstrations 14:45–15:45, Theater II
		Th3H.5 • 15:00 100G FSO Transmission Using 3-Bit DAC and Self- Coherent Detection, Romil Patel ^{1,2} , Guilherme A. Domingues ^{1,2} , Nelson J. Muga ^{1,2} , Armando N. Pinto ^{1,2} , Marco A. Fernandes ^{1,2} , Gil M. Fernandes ¹ , Paulo Monteiro ^{1,2} , Fernando Guiomar ^{1,2} ; Instituto de Teleco- municações, Portugal; ² DETI, Universidade de Aveiro, Portugal. Using a virtual-carrier-assisted self-coherent system aided by a digital resolution enhancement technique, we experimentally demonstrate 100 Gbps FSO transmission over an outdoor 42 m link, supported by a single photoreceiver and a simplified transmitter with a 3-bit DAC.	Th3J.4 • 15:00 Simple and Fast Polarization Tracking Algorithm for Continuous-Variable Quantum Key Distribu- tion System, Yan Pan', Heng Wang', Yun Shao', Yaodi Pi', Ting Ye', Yang Li', Wei Huang', Bingjie Xu'; 'Science and Technology on Communication Security Laboratory, Inst. of Southwestern Communi- cation, China. A simple and fast polarization tracking algorithm for pilot tone-assisted CV-QKD system is demonstrated. Experimental results show that the proposed algorithm can track polarization scrambling rate ≥12.57 krad/s with a good performance.	
		Th3H.6 • 15:15 Lightweight Light-Diffusing Fiber Transmitter Equipped Unmanned-Aerial-Vehicle (UAV) for Large Field-of-View (FOV) Optical Wireless Communica- tion, Yun-Han Chang ¹ , Deng-Cheng Tsai ¹ , Chi-Wai Chow ¹ , Chih-Chun Wang ¹ , Shang-Yen Tsai ¹ , Yang Liu, Chien-Hung Yeh ³ , ¹ National Yang Ming Chiao Tung Univ., Taiwan, ² Philips, Hong Kong; ³ Feng Chia Univ., Taiwan. We propose a light-diffusing-fiber transmitter (LDF-Tx) equipped unmanned-aerial-vehicle (UAV) for optical-wireless-communication (OWC). Long-short- term-memory-neural-network (LSTMNN) provides efficient rolling-shutter-pattern decoding at 360° around LDF-Tx circumference.	Th3J.5 • 15:15 Open Quantum Channel Stabilization for Twin-Field Quantum key Distribution, Lai Zhou', Jinping Lin', Yumang Jing', Zhiliang Yuan'; 'Beijing Academy of Quantum Information Sciences, China. We develop a novel technique to stabilize an open channel without using frequency dissemination for twin-field quantum key distribution. A versatile setup is demonstrated at a distance of 615.6 km, achieving the repeater- like behaviour.	

Room 1AB

Room 2

Th3C • Doped Fiber

Room 6C

Room 6D

Demonstration of Polar Coded Truncated

Probabilistic Shaped 64-QAM Trans-

mission Over 2000-km G.654E Fiber,

Xiaoshuo Jia1, Ming Luo2, Yan Li1, Chao

Yang², Wu Liu², Xiaobin Hong¹, Hongxiang

Guo¹, Jifang Qiu¹, Jian Wu¹; ¹Beijing Univ

of Posts & Telecom, China: ²China Informa-

tion and Communication Technologies

Group Corporation, State Key Laboratory of

Optical Communication Technologies and

Network, China, In this paper, a polar coded

truncated probabilistic shaped 64-QAM

(PTPS-64QAM) scheme is proposed and

investigated over the G.654E fiber. Results

show that about 2000-km transmission

could be achieved aided by the novel

Th3E • Modulation

Th3E.6 • 15:30

proposed scheme.

equalization.

Formats—Continued

Room 6E

Th3F • Wideband Transmission Systems— Continued

Th3F.6 • 15:30

U-Band Transmission of Real-Time 200-Gb/s Signal Co-Propagating With C+L-Band WDM Signal, Tomoyuki Kato¹, Hiroyuki Irie¹, Hidenobu Muranaka¹, Yu Tanaka¹, Yuichi Akiyama¹, Takeshi Hoshida¹; ¹Fujitsu Limited, Japan. We propose a U-band transmission added to the C+Lband that can mitigate large loss at long wavelength by inter-channel SRS. The benefit is demonstrated in 80-km SSMF transmission of real-time 200-Gb/s DP-QPSK signal.

Th3F.7 • 15:45

O-Band Transmission Over High-Cutoff G.654.C Fiber, John D. Downie¹, Petr Sterlingov¹, Jason Hurley¹, Hector De Pedro¹, Xin Chen¹, David Seddon¹; ¹Corning Inc, USA. We demonstrate via modeling and experiments the feasibility of O-band transmission over ultra-low loss G.654.C fiber in cabled conditions. Lab experiments with a 100G O-band transceiver show no penalty and transmission up to 99 km.

Th3A • Novel Enabling **Devices**—Continued

Th3A.6 • 15:30

Novel Blue-Green Light Phase Array by Light-Sheet-Excited One-Dimension Strip Grating Array, Weiwei Liu¹, Binghui Li², Caiming Sun^{1,2}; ¹Peng Cheng Laboratory, China; ²The Chinese Univ. of Hong Kong (CUHK), Shenzhen, China, We demonstrate a novel blue-green light phased array by light-sheet-excited 1D strip waveguide grating with nearly spot emission profile. By tuning wavelength, the range 15° of beam steering was achieved.

Th3A.7 • 15:45 Multifunctional Anisotropic Thermo-Optic Mach-Zehnder Interferometer on LNOI, Lijia Song¹, Weixi Liu¹, Huan Li¹,

Yaocheng Shi¹, Daoxin Dai¹; ¹Zhejiang Univ., China. Harnessing the strong anisotropy of lithium niobate, we have proposed a multifunctional thermo-optic Mach-Zehnder interferometer on x-cut LNOI and experimentally demonstrated its versatile configurations as a polarization-insensitive switch and a polarization beam splitter.

Th3B • Silicon Photonics Devices and Integrated Circuits—Continued

Th3B.4 • 15:30

Single Lane 330 Gb/s Silicon Photonic Microring Modulator With sub 2 v ... Driving Voltage, David Chan¹, Xiong Wu², Alan Pak Tao Lau³, Chao Lu², Hon Ki Tsang¹; ¹Department of Electronic Engineering, The Chinese Univ. of Hong Kong, Hong Kong; ²Department of Electronic and Information Engineering, The Hong Kong Polytechnic Univ., Hong Kong; ³Department of Électrical Engineering, The Hong Kong Polytechnic Univ., Hong Kong, We present the first silicon photonic microring modulator operating at up to 330 Gb/s. The modulator can support PAM-8 with driving voltage under 2 V_m in C-band using a polynomial nonlinear equalizer.

Th3B.5 • 15:45

III-v-on-Silicon Nitride Narrow-Linewidth Tunable Laser Based on Micro-Transfer Printing, Biwei Pan^{1,2}, Jerome Bourderionnet³, Vincent Billault³, Arnaud Brignon³, Sarvagya Dwivedi⁴, Marcus Dahlem⁴, Cian Cummins⁴, Sandeep S. Saseendran⁴, Nga Pham⁴, Philippe Helin⁴, Nicolas Vaissière⁵, Delphine Néel⁵, Joan Ramirez⁵, Jean Decobert⁵, Johanna Rimböck⁶, Ruggero Loi7, Alin Fecioru7, Emadreza Soltanian1.2, Jing Zhang^{1,2}, Bart Kuyken^{1,2}, Gunther Roelkens^{1,2}; ¹Photonics Research Group, INTEC, Ghent Univ. - imec, Belgium; ²Center for Nano- and Biophotonics, Ghent Univ. imec, Belgium; ³Thales Research and Technology, France; ⁴IMEC, Belgium; ⁵III-V Lab, France; ⁶EV Group, Austria; ⁷X-Celeprint, Ireland. We demonstrate a narrow-linewidth tunable laser through micro-transfer printing a pre-fabricated III-V gain section on imec's 200-mm Si/SiN platform. Lasing in distinct bands in the C+L band is demonstrated. with linewidth down to 2.87-kHz.

Amplifiers—Continued

Th3C.7 • 15:30 Invited High Power EDFAs for Free Space

Communication, Jeffrey W. Nicholson¹, Andrew Grimes¹, Anand Hariharan¹, V. Sudarshanam¹, Cang Jin¹, Yingzhi Sun¹; ¹OFS, USA. Progress and performance of high-power EDFAs, in-band pumped by Raman fiber lasers operating at 1480 nm will be reviewed. Applications of these laser systems to free-space communications will be discussed.

Th3D • Advances in Data Center Switching and Interconnects—Continued

Th3D.5 • 15:30 Invited

Integrating Nanosecond Optical Switching in Deep Distributed Learning System, Cen Wang¹; ¹KDDI R&D Laboratories, Japan. We propose O(10ns) optical switching structure with wavelength-elastic and topology-flexibility in support of distributed deep learning platform. Our experimental demonstration shows accelerations for three use cases.

Th3E.7 • 15:45 C-Band 100 Gb/s Transmission Over 40 km SSMF Using a Silicon Photonic Vestigial Sideband Transmitter Based on Dual-Drive MZM and Passive Optical Delay Line, Essam Berikaa¹, Md Samiul Alam¹, Yixiang Hu¹, Weijia Li¹, David Plant¹; ¹McGill Univ., Canada. We demonstrate a filter-free silicon photonic VSB transmitter, enabling the C-band transmission of 56 Gbaud PAM4 over 40 km of dispersion-uncompensated SSMF under the 6.7% overhead HD-FEC with a single DAC channel and non-linear

16:00–16:30 Coffee Break, Upper Level Corridors

16:30–18:30 Postdeadline Paper Sessions, Room 6C, 6D, 6E, 6F

120

Room 6F	Room 7AB	Room 8	Room 9	Show Floor Programming
h3G • High Data-Rate Direct Detection in Access—Continued	Th3I • Panel: Roadmap for Photonic AI Accelerators—Continued	 Th3H • Free Space and Optical Camera Communications— Continued Th3H.7 • 15:30 Tist Demonstration of 512-Color Shift Keying Signal Demodulation Using Neural Equalization for Optical Camera Communication, Yukito Onodera¹, Daisuke Hisano², Kazuki Maruta³, Yu Nakayama¹; ¹Okyo Univ. of Agriculture and Technology, Japari, ²Osaka Univ., Japari, ³Tokyo Univ. of Science, Japan. This paper experimentally demonstrates 512 color shift keying (CSK) signal transmission for optical camera communication (OCC). We achieved error- free operation with a CMOS image sensor module and a multi-label classification neural network-based equalizer. 	via Coherent Energy Redistribution, Benjamin G. Crockett ¹ , Nicola Montaut ¹ , James van Howe ^{1,2} , Piotr Roztocki ^{1,3} , Yang Liu ^{1,4} , Robin Helsten ¹ , Wei Zhao ^{4,5} , Roberto Morandotti ¹ , Jose Azaña ¹ ; ¹ INRS, Canada; ² Department of Physics and Astronomy, Augustana College, USA; ³ Ki3 Photonics Technologies, Canada; ⁴ Xi'an Inst. of Optics and Precision Mechanics, Chi- nese Academy of Sciences, China; ⁵ Univ. of Chinese Academy of Sciences, China; Towards meeting the	SF15 • 3D Sensing in High Volume Consumer and Automotive Applications 14:45–15:45, Theater I SF16 • F5G Update: The Second Release of Use Cases and Demonstrations 14:45–15:45, Theater II
			Th3J.7 • 15:45 Spectroscopy Characterization of Quantum Modes in an on-Chip Squeezed Microcomb, Mandana Jahanbozorgi ¹ , Zijiao Yang ¹ , Emily Parnell ¹ , Dongin Jeong ² , Shuman Sun ¹ , Olivier Pfister ¹ , Hansuek Lee ² , Xu Yi ¹ ; ¹ Univ. of Virginia, USA; ² Korea Advanced Inst. of Science and Technology, Korea (the Republic of). We characterized the spectrum of 40 quantum modes in an on-chip squeezed microcomb. A theoretical model is developed to explain how cavity dispersion affects the squeezing and the frequency equidistance of these quantum modes.	

16:00–16:30 Coffee Break, Upper Level Corridors

16:30–18:30 Postdeadline Paper Sessions, Room 6C, 6D, 6E, 6F

Key to Authors and Presiders

Abbas, Hasan,- Th3H.4 Abdelli, Khouloud,- M2G.4 Abdi, Salim,- Tu3I.3 Abdullah, Muhamad, - M3Z.16 Abe, Jun'ichi,- W3E.6 Abe, Kenichi, - M2D.2 Abe, Masashi,- Th3F.3 Abe, Yuma,- Th1H.3 Abnaou, Lahcen, - M3Z.8 Abokhamis Mousavi, Seyed Mohammad,-W4D.3 Abouseif, Akram,- W3E.3 Achleitner, Martin,- W4K.1 Achten, Frank, - M2B.3, M2B.4, M4B.5, M4G.3, Tu3E.3 Ackermann, Manuel,- W2A.6 Adamson, Per,- M3C.6 Aday, Jon, - M3I.5 Afif, Muhammad, - M3Z.16 Afifi, Abdelrahman,- Th2A.36 Aflatouni, Firooz,- M3I.2 Agraz, Fernando,- Tu3D.2 Agus, Mauro,-W3F.1 Ahmad, Zohauddin, - M3F.2, W2A.8 Ai, Ke,- Tu3G.3 Aihara, Takuma,- Tu2B.5 Aizawa, Kazuhiko,- Tu3E.5 Akahane, Kouichi,- Tu2J.1, W2A.34, W3F.6, W3I.2, W4E.3, Th2A.6 Akasaka, Youichi,- Th1B.2 Akashi, Osamu,- Th2A.13 Akatsuka, Tomoya, - M3J.2 Akiyama, Tomoyuki,- M4I.5 Akivama, Yuichi, - Th3F.6 Akulova, Yuliya, - M1E.5, Tu2E.4 Alam, Md Samiul,- Th2A.5, Th3E.7 Albores-Mejia, Aaron,- W2A.37 Aldama, Jennifer,- M1I.3 Alemany, Pol, - Tu3D.3 Alevizaki, Victoria Maria,-W4F.4 Alexoudi, Theonitsa,- M2J.1 Alhaddad, Abdulrahman, - M3F.4 Al-hemvari, Kadhair, Th3B.1, Tu2E.4 Alhussein, Muataz, - M2I.3

Α

Abautret, Johan,- Th1H.1, Th2A.32

Aalto, Timo,- M4J,3

Ali, Wajahat,- W3I.6 Alia, Obada,-W4K.3 Alkhazragi, Omar,- W3I.5, W4C.6 Almaiman, Ahmed, - W2A.32 Almonacil, Sylvain,- W4H.2 Alnairat, Saif.- Th2A.3 Alsaui, Abdulmohsen,-W2B.28 Al-Shaikhli, Fatima,- W4C.2 Althoff, Stephanie, - M3Z.7 Alwehaibi, Yazeed,- W2B.28 Amano, Takeru, - M3E.2 Ambrosone, Renato,- Tu3D.4 Amin, Rubab,- Th1I.4 An, Shaohua,- M2F.2 Anantathanasarn, Sanguan,- W2A.11 Anastasopoulos, Markos,- W4F.4 Anchal, Abhishek,- M2G.2 Andersen, Ulrik, - M3A.4, Th3J.2 Andersson, Mikael,- M3Z.6 Andrade, Hector, - M1E.5, Th2A.2 Andrekson, Peter,-W4C, Th1B.4 Anet Neto, Luiz,- W3F Ang, Rachel, - M4I.3 Angra, Nikhil,- Tu2C.4 Annabattuni, Dedeepya,-M3I.4 Annavaram, Murali,- W2A.32 Antona, Jean-Christophe, - M2E.1, Tu2G.5 Antonelli, Cristian, - M2B.3, M2B.4, M4G.3, W1J.5 Aono, Yoshiaki,- W3H.4 Aoyama, Konosuke, - M4C.4 Apiratikul, Paveen,-W3D.2 Aquilino, Francesco,- Tu3D.4, W1E.6, Th2A.23 Arabhavi, Akshay,- Th2A.7 Arabul, Ekin, - M3G.7, Tu3H.5 Aragane, Yosuke,- Tu2A.1 Arantes, Dalton, - M1G.3, M3Z.10 Arashitani, Yoshihiro,- W2A.12, Th2A.10 Arbel-Arenfrid, Or,- M2J.6 Argyris, Nikos,-Th2A.15 Arikawa, Manabu,- W3E.6 Arnold, Elias,- W4E.1 Arora, Sumeeta,- M2D.3 Arpanaei, Farhad,- Tu2D.5

Arrunategui, Viviana,- Th2A.2 Asahi, Koji,-W3H.4 Asakura, Hideaki,- M2D.4 Asghari, Mehdi,-W4B.6 Ashizawa, Ken,-W1A.3 Ashry, Islam,-W4C.6 Ashtiani, Farshid, - M1J.6 Askari, Murtaza,- W3D.2 Atias, Boaz,-Tu3I.3 Atsumi, Yuki, - M3C.4, M4J.2 Autenrieth, Achim, - M3G.2, M3Z.3, M3Z.4, M3Z.9, Th2A.37 Avramopoulos, Hercules,- Tu3I.3 Awaji, Yoshinari,- M1G.4, Th1H.2 Awwad, Elie,- W1J.5 Azadeh, Saeed S.,- Tu3C.5 Azaña, Jose, - M1J.5, M1J.7, W4C.3, W4C.7, Th3J.6 Azendorf, Florian,- W3J.3

В

Baba, Toshihiko,- M2C.4 Bacco, Davide,- M2I.4 Baek, Ju Hee,- M1I.4 Baek, Yongsoon,-W4B.4 Baeuerle, Benedikt,- Tu2E.5, W3I.1 Bagci, Hakan,- W3I.5 Bahmanian, Meysam, - M3Z.18 Bahrani, Sima,- Tu2H.2, W4K.3 Bai, Lirong,-W2A.13, Th2A.20 Bai, Wenlin,- W2B.27 Baidoo, Evans,- M1J.3 Bakopoulos, Paraskevas, - Tu3I.3, W3G.1, Th2A.15 Balakier, Katarzyna,- Th2A.33 Balamurugan, Ganesh,- Tu2E.3 Balanici, Mihail,- M3G.2 Balasis, Filippos,- Tu3D.5 Balonek, Robert,- M3C.6 Baltzer, Wanda,-W4G.2 Bamiedakis, Nikos,- Tu3B.3 Ban, Dechao, - M4C.3 Ban, Yooiin,- W3D.5 Banda, Mounika,- W3H.2 Bannaron, Alisa,- Tu3C.4 Bao, Xiaoyi, - M2C Barbosa, Fabio,- Th2A.31

Barcelos, Sérgio,-W3J.2 Barry, Liam, - M4C.6, Th2A.27 Bartolini, Glenn,- M1C, M4I Barzegar, Sima,-W2A.18, W4A.3 Bastamova, Mariia,- Th2A.12 Batshon, Hussam,-W4E Baumann, Michael,- Th2A.34 Bauters, Jared, - W3D.3 Bayvel, Polina, - M3F.3, W2A.29, W3E.2, W3E.5, Th1F.3 Beausoleil, Raymond,- W1A.2, W1A.5, W3G.3, W3G.4 Beckerwerth, Tobias, - M1I.3, Tu3I.2 Bedroya, Olinka,- Th3J.3 Beghelli, Alejandra, - Tu2F.6, W2A.19, W4K.2 Bekele, Dagmawi,- M3Z.17 Beling, Andreas,-W2B.2 Benjamin, Joshua,-W1G.4 Bennett, Alex,-W2A.7 Beppu, Shohei, - Tu2C.5, Tu3D.5, Tu3E.5 Berges, Mathieu,- Th2A.34 Bergman, Keren, - M3I.1, M4E.4, M4I.1, W1G.1, Th3A.3, Th3A.4, Th3A.5 Bergroth, Magnus,-Tu3G,4 Berikaa, Essam,- Th3E.7 Berkay On, Mehmet, - M1J.6, M3I.4 Bernal, Santiago,- Th2A.5 Bernauer, Julie,- Th2A.15 Bernini, Alexis,- Th2A.33 Betoule, Christophe,- Th2A.18 Bex, Pieter,-W3D.5 Bhasker, Prashanth, - M2D.3 Bhat, Srivathsa, - M4J.3 Bian, Chengzhen,- Tu3J.5 Bian, Yusheng, - M3C.3, Th1A.5, Th2A.24 Bidkar, Sarvesh,- Tu3F.5, W4F.5 Biehs, Steffen, - M3G.2, M3Z.3 Bigo, Sébastien,- Th3D.2 Bigot, Laurent,- M4B.3 Bigot, Marianne,- M4B.3, M4B.5, Tu3E.3 Billault, Vincent,- Th3B.5 Bissessur, Hans,- Tu2G.4

Th2A.34 Bitauld, David,- M1C.5 Bjørnstad, Steinar,- W1J.2 Blanco-Redondo, Andrea, - M1J.6 Blatter, Tobias, - Tu3C.3, W3I.1 Bluemm, Christian,- M1F.5 Blumenthal, Daniel, - M1A, M1E.3, M3J.3, Th3A.2 Bobrovs, Vjačeslavs,- Tu3I.1, W2A.33, W2B.12, Th1H.1, Th2A.32 Böcherer, Georg, - M1F.3, W4E.1 Bock, Harald, - M3Z.15, Tu2D.1, Th2A.17 Bock, Robert,- M3F.4 Bode, Dieter,- W3D.5 Boffi, Pierpaolo, - M2B.3, M4G.3 Bogoni, Antonella,- Th1H.4 Boitier, Fabien, - M3Z.4, Tu2G.3, W1H.3 Bolognesi, Colombo,- Th2A.7 Boning, Duane,- W2A.35 Bonk, Rene,- Tu3F.5, W4F.5 Bonnefois, Aurélie, - M2I.5, W3I.1 Bononi, Alberto,- W1H.3 Börjeson, Erik,- M1F.4, Tu3G.4 Borkowski, Robert, - M3E, Th1G,1 Borraccini, Giacomo, - Tu3D.4, W1E.6 Bosco, Gabriella,-W4H.1 Bottrill, Kyle,-, W4D.5, Th1B.3, Th3F.5 Botzuna, Corentin, - Th3C.3 Bouchedoub, Ayoub, - M3G.2, M3Z.3 Bourderionnet, Jerome, - Th3B.5 Bovio, Andrea,- Th2A.29 Bowers, John E.,- Th1A.1 Bozorgebrahimi, Kurosh,-W1J.2 Bramerie, Laurent,- Th3G,1 Bratovich, Rudi,- Th2A.29 Braun, Ralf-Peter,-W4K.1 Bravo Ospina, Ruby,- Tu3E.3 Brenot, Romain,- W3E.4 Brestas, Giorgos, - Tu3I.3 Briantcev, Dmitrii,-W4C.6 Brignon, Arnaud,- Th3B.5 Briles, Travis, - M1E.3, M3D.6, Th1B.6 Brito, Juan P.,- W4K.1

Bitachon, Bertold Ian,- Tu3C.3, W3I.1,

Brodnik, Grant,- M1E.3 Browning, Colm,- Th2A.27 Brügge, Maximilian,- M3Z.7 Brunner, Marcus,- Tu2A.2 Brusberg, Lars,- Th1A.4 Bsaibes, Maroun,- M4B.3 Buchali, Fred,- M2F.4 Buckwalter, James,- M1E.5, Th2A.2 Budd, Leonard,- W4D.2 Buglia, Henrique,- W2A.29 Bulus Rossini, Laureano A.,- M1J.7 Burgos, Daniel,- W2A.2 Büscher, Martin,- W1B.1 Busson, Alexis,- Tu2G.4 Buyalo, Mikhail,- M4C.6

С

Cai, Chengkun,- Tu3I.7 Cai, Jin-Xing,- Tu3E.1 Cai, Li,- W2A.2 Cai, Qian,-W1F.4 Cai, Xiaofeng,- Tu3D,1 Cai, Xinlun,- Tu3C.1 Cai, Yi,- W2A.25 Cai, Yijia,- Th1B.5 Cai, Yuancheng,- Tu3D.1, Tu3J.1, Tu3J.7, W2A.20, W3F.2, W3F.3, W4J.2 Caimi, Daniele,-W4B.5 Caja-Diaz, Juan Carlos, - M3Z.9 Calabretta, Nicola, - M4J.3, Tu2E.2, Tu3I.3, W1G.3, W2A.14, Th3D.3 Calabrò, Stefano, - M1F.3, M1F.5, W2A.23, W4E.1 Calderaro, Luca,- W4K.1 Caldwell, Emily,- M3J.1 Calonico, Davide, - M2I,1 Calsat, Alain,- Tu2G.3 Camatel, Stefano,- M3C Campos, Luis,- W1I.2, W1I.4 Cano, Ivan,- Th1G.2 Cao, Zicai,- W2B.14 Cappelletti, Martina, - M2F.3, W1C.3 Capps, Louis,- Th2A.15 Carapellese, Nicola,- M3Z.9 Carbo Meseguer, Alexis, - M2E.1, Tu2G.3, Tu2G.5 Cardenas, Jaime, - M3C.1 Carena, Andrea, - M2B.4, Th2A.23 Caretti, Marco,-W3F.1 Carlson, David, - M3D.6, Th1B.6

Carpenter, Joel, - Tu3E.3 Caruso, Giuseppe,-Th1G.2 Casellas, Ramon, - M3Z.4, M3Z.9, M4G.2, Tu1A, Tu3D.3, Tu3D.5, Tu3D.7 Cassioli, Dajana,- W3F.4 Castelvero, Lorenzo, - M1I.3 Castoldi, Andrea,- Th2A.29 Castro, Jose,- W2A.1 Cataliotti, Francesco Saverio, - M2I.4 Cavazzoni, Carlo,- W3F.1 Cavicchioli, Gabriele,-W3I.7 Centofanti, Carlo,- W3F.4 Cesila, Celso, - M3Z.10 Chacinski, Marek, - Tu3I.1 Chakraborty, Uttara,- W2A.35 Chan, Chun-Kit,- W2A.30 Chan, David,- Th3B.4 Chan, Vincent,- W1F.1 Chanclou, Philippe,- Tu3F.1, Tu3F.3, Th1G.3, Th3G.1, Th3G.3 Chandrababu, Govardan,- W3H.2 Chang, Frank,- W3D Chang, Hsiang-Szu,-W2A.8 Chang, Junho,- W2A.27 Chang, Kai-Chieh,- Th3C.4 Chang, Lin,- Th1A.1 Chang, Po-Hsuan, - M3I.4 Chang, Tianhai, - M4C.2 Chang, Yan-Chieh,-W1A.7 Chang, You-Chia,- M3F.2 Chang, Yun-Han, - M4F.5, Th3H.6 Chang-Hasnain, Connie,- Tu2B Chansky, Evan,- Th2A.2 Charlet, Gabriel, - W3E.1, W3E.4, Th1E.3, Th3F.4 Chatterjee, Sumit,- M2G.2 Chaudhary, Rimjhim,- Th2A.7 Che, Di,- Tu3l.1, W1E, W4E.4 Che, Ming, - M3D.4 Chelladurai, Daniel,- Tu3C.3 Chen, Baisong,-W3I.4 Chen, Bin,- W2A.25 Chen, Can,-W2B.7 Chen, Daigao,- Th3B.2 Chen, Daru,-W1J.4 Chen, Gary,- W1B.4 Chen, Geng,- M1C.6 Chen, H.-S.,- W2A.8 Chen, Haoshuo,- M2B.4, M3G.5, M3Z.11, Tu3E.3, Tu3G.4, W1C.3

Chen, Hong,-Tu3C.5 Chen, Huang-Ming,- M4F.3 Chen, Jian, - W2A.20, W3F.2 Chen, Jianping,- M3F.7 Chen, Junda,- Th2A.28 Chen, Junfeng,- Tu3G.3 Chen, Jyehong,- M3F.2 Chen, Liang,- W3I.5 Chen, Lian-Kuan,- M4F.2 Chen, Long,- M3I Chen, Ming,-W2B.10 Chen, Minachen, Th1E.7 Chen, Nan-Wei,- W2A.8 Chen, Nuo,- M4J.6 Chen, Qiang,- Th3H.4 Chen, Qin,-W2B.4 Chen, Rui,-W3I.6 Chen, Shuangcheng,- Th3H.4 Chen, Shuyan, - M2C.3, M4F.2 Chen, Sihan,- W2B.21 Chen, Tingjun,- W3H.4, Th2A.1 Chen, Wang,- Th2A.20 Chen, Weizhang,- Tu2G.6 Chen, Wenjing,- Th2A.25 Chen, Xiaoliang,- Tu2D.4, W4G.1 Chen, Xin,- Th3F.7 Chen, Xingyun,-W2B.18 Chen, Xuechuan,- W2B.16 Chen, Yan,- Th2A.20 Chen, Yen-Jung,- Th3B.1 Chen, Yizhao, - M3E.3, Th2A.28 Chen, Yong,- W2B.17 Chen, Yu,- W2B.8 Chen, Yun,- W2B.10, Th3H.3 Chen, Zhangyuan, - M4E.5, Tu2J.2, W4D.6, W4H.7 Chen, Zhaowei, - Tu3I.3 Chen, Zhiwei,- Th1E.2 Chen, Zhuo,- W4E.2 Chen, Zihao, - M2J.2 Cheng, Chen,-Th2A.28, Th3H.2 Cheng, Gang, - M1G.5, W1H.5, Th2A.22 Cheng, Guanglian,- M4I.4 Cheng, Hongtao,- W2B.6 Cheng, Jin,- Th2A.20 Cheng, Mengfan, - W2B.11, W4E.2 Cheng, Ning,- M4C.3, W2A.24, Th2A.22 Cheng, Wei-Chih,- Th3C.4 Cheng, Wood-Hi,- Th3C.4

Cheng, Yihao, - M3D.2, W2B.24 Cheng, Yuanbing, - M4C.2 Cheung, Stanley,- W1A.2, W1A.5, W3G.4 Chi, Nan,- W1I.3, W1I.5, W2B.26, W4J.5 Chiaverini, John.- W1B.5 Chichibu, Shigefusa,- Th1H.2 Chien, Hungchang (James),- Th1E Chin, Hou-Man,- Th3J.2 Cho, Jae-Kyu,- Th1A.5 Choe, Joong-Seon,- M1I.4, W2A.36 Choi, Byung-seok, - M1I.4, W2A.36 Choi, Seungman,- Th1A.5 Chong, Sau Siong,- W2A.2 Chorchos, Lukasz,- M4C.8 Chou, Elaine,- M2B.6 Choutagunta, Karthik, - M2B.6 Chow, Chi-Wai, - M4F.3, M4F.5, W1B.4, Th3H.6 Christodoulopoulos, Konstantinos (Kostas),- M3G, Tu3F.5 Chrostowski, Lukas, - Th2A.36, Th3A Chu, Jun,- Tu3I.7, W4C.5 Chu, Sai T.,- W2B.29 Chu, Tao,- M4J.6 Chua, Hongyao, - Tu3C.5 Chung, Joaquin,- Tu3H.3 Chun-Nien, Liu,- Th3C.4 Churaev, Mikhail,- W4B.5 Cinquino, Mike,- M3C.6 Ciufo Poeys, Roque,- W2A.9 Civelli, Stella,- Th3E.2, Th3E.5 Clark, Jeffrey,- Th1A.4 Clark, Kari, - M3E.5, W4F.3 Clark, Marcus,- W4K.3 Clark, Thomas,- Tu2J Clinton-Tarestad, Piers,- W4K.4 Clivati, Cecilia, - M2I.1 Cohen, Eyal, - M2J.6 Coldren, Larry,- M1E.5 Cole, Christopher,- Tu1A Coletti, Camilla,- M3D.1 Comellas, Jaume, - M1G.6, M3Z.4 Conan, Jean-Marc,- M2I.5, W3I.1 Conca, Enrico,- M2I.4 Condo, Carlo,- Tu2G.1 Cong, Guangwei, - W3G.2 Convertino, Clarissa,- Tu3C.3 Corbett, Brian,- W3B.5 Corcoran, Bill,- M1J

Costa, Nelson, - M3G.3, M4G.6, W2A.16, W2A.18, Th1F.7 Costanzo Caso, Pablo A.,- M1J.7 Coudyzer, Gertjan, - M2J.3 Courtois, Olivier,- Tu2G.5 Cramm, Colin,- W2A.2 Crisp, Michael,-W3I.6 Crockett, Benjamin,- M1J.5, M1J.7, W4C.3, W4C.7, Th3J.6 Cugini, Filippo,-M1G.2, M3Z.13, Tu3D.4, Th1D.5 Cui, Jian, - M4E.5 Cui, Liang,- W2B.29, W2B.6 Cui, Yongxin,- M1G.5, W1H.5 Cullen, Michael, - M3I.1 Cummins, Cian,- Th3B.5 Curri, Vittorio,-W1E.6, Th2A.29 Curtol, Marina, - M3Z.8 Cwalina, Sarah,- M3F.6

D

D'Acierno, Alessandro,-W3I.7 D'Amico, Andrea, - Tu3D.4, W1E.6, Th2A.29 D'Errico, Antonio,- M3D,1 D'Mello, Yannick,- Th2A.5 Dabos, George,-W3G.1 Dadash, Sadegh,-W2A.2 Dahan, David,- W2A.28 Dahl, Daniel,- Tu3E.3 Dahlem, Marcus,- Th3B.5 Dai, Chenhao, - M1C.6 Dai, Daoxin,- Th3A.7 Dai, Jing,- W1E.3, W2B.14 Dai, Liang Yuan,- W1G.1 Dai, Longquan,-W1E.3, W2B.14 Dai, Tingge,- M3F.1 Dai, Xiaoxiao,- W2B.11, W4E.2 Dai, Yizhan, - M4F.2, W2A.30 Dallachiesa, Lauren, - M2B.4, M3G.5, M3Z.11, Tu3G.4, W1J.5 Dally, Bill, - M4E.3 Dana, Yoav,- M1C.3 Dang, Daohang,- W2B.9 Date, Hiroki,- W2A.17 Daudlin, Stuart, - M3I,1 Dave, Utsav,- M4I.1 Davey, Gawen, - Tu3D.6 Davey, Russell,-W3H.3, W4K.4 Davidson, Salem Blue,- Th2A.18 De Coster, Jeroen,- W3D.5

De Marco, Innocenzo,-W3C.5 De Pedro, Hector,- Th3F.7 De Vita, Christian, - M3C.2 Deakin, Callum,- M1J.2 Deckoff-Jones, Skylar,- M4I.2 Decobert, Jean,- Th3B.5 Defrees, Reece,- Th3B.1 Degiovanni, Ivo,- M2I.1 Delfyett, Peter,- M3D.6 Demirtzioglou, Losif,-W3E.4 Deng, Lei,- W1E.3, W2B.11, W2B.14, W4E.2 Deng, Qiqi,-W3C.3 Dena, Qiuzhuo,- W2A.33 Deng, Zhaoang,- M2J.2 Denis-Le Coarer, Florian, - M4C.5 Dennison, Larry,- M2A.3 Dequal, Daniele,- M2I.5 Deschenes, Jean-Daniel, - M3J.1 Descos, Antoine,- W3G.3 Dessemond, Camille,- Th3G.3 Destraz, Marcel,-W3I.1 Devigili, Mariano,- W2A.18 Di Francesca, Diego,- W4D.4 Di Sciullo, Giammarco, - M2B.3, M4G.3 Di, Yujie,- M4F.2 Diamanti, Eleni, - M1I.2, M1I.3, M2I, M2I.5, M4A Diaz Otero, Francisco,- Th2A.27 DiGiovanni, David,- Th3C.1 Ding, Junjie,- Th11.2, Tu3J.1, W2B.10 Ding, Ning, - M3C.8 Ding, Rui,-W2B.9 Ding, Wei,- W4D.1, W4D.6, W4H.7 DIngillo, Rocco,- Tu3D.4 Dippon, Thomas, - Tu3I.1, W2B.12 Djordjevic, Stevan,- Th2A.3 Djupsjobacka, Anders, - Th2A.32 Doerr, Christopher,- Tu2E.1 Doi, Rvo, - M3D.4 Domingues, Guilherme,- Th3H.5 Dominic, Vince,-W1E.1, W3H.1 Donadello, Simone,- M2I.1 Dong, Boyu,- W4J.5 Dong, Liang,- W4B.3 Dong, Ming,- W3I.5 Dong, Yuan,- W2B.1

De Heyn, Peter,- W3D.5

De Lazzari, Claudia, - M2I,4

De Leo, Eva,- Tu2E.5, W3I.1

Dong, Ze,-W2B.10 Donodin, Aleksandr,- Th1B.7, Th2A.11 Doran, Nick, - Th2A.12 Dorize, Christian,-W1J.5 Dorward, William,- M3I.3 Doussiere, Pierre,- Tu2E.4 Downie, John,- Tu3E, Th3F.7 Drechsler, Ute,- W4B.5 Driscoll, Jeffrey,- Th1A.6 Du, Cheng,- M1B.3 Du, Jiangbing,- W2A.4 Du, Xufeng,- M3F.1 Du, Yinchao,- Th2A.22 Du, Zhe,- Tu3A.2 Duan, MingXiong,-Tu2G.7 Duan, Xiaodong,- W2A.13, W2B.16, W3D.4, W4H.7, Th2A.20 Duan, Yuxiang, - M3F.4, Th3H.1 Dulashko, Yuriy,- Th3C.1 Dupont, Sebastien,- Tu2G.2 Duthel, Thomas,-W1E.1, W3H.1 Dvoyrin, Vladislav,- Th2A.11 Dwivedi, Sarvaqya,- Th3B.5 Dynes, James,- Tu3H.2, W4K.4

Е

Ebihara, Koji,- W1A.3 Eckoldt, Lorenz,-W3C.4 Economou, Sophia, - M3A.3 Edwards, Kyle,- W3H.2 Effenberger, Frank,- W4F Eichenfield, Matt,- M3D.3, M4A.1 Eira, António, - M1G.1, M4G.6 Eiselt, Michael,- W3J.3 Ekawa, Mitsuru,- W1A.3 El Dahdah, Nayla,- W3E.4 El Imadi, Abdelali, - M3Z.8 Elbers, Joerg-Peter,- W3H.6, Th2A.37 Elbers, Jörg-Peter,- Tu2F.2 Eldebiky, Amro, - M1F.3 Ellis, Andrew,-Th2A.12 Ellsworth, Nathan Andrew,- Th2A.18 Ellsworth, Nathan, - M3Z.14 Elsayed, Mohammed, - M1J.3 Elson, Daniel, - M2B.1, M3G.6 Eltes, Felix,- Tu3C.3 Emami, Azita,- M1E.6 Emanuel, Mark,- M4C.1 Emmerich, Robert, - M2B.3, M4G.3 Enbutsu, Koji, - M4G.1, Th3F.3

Endo, Yuma,- M2D.4 Eng, Julie,- Tu2B.1 Eppenberger, Marco,- Th2A.7 Eriksson, Tobias,- W3H.1 Erkilinc, Sezer,- W1E.1 Erkmen, Baris,- M3F Ernst, Dan,- M2A.5 Errea, Javier,- M3Z.8 Escobar Landero, Salma,- Th3F.4 Eshaghian Dorche, Ali,- Tu3C.6 Esparza, Juan Uriel,- Tu2G.4, Tu2G.5 Esparza, Juan,- Tu2G.2, Tu2G.3 Etcheverry, Sebastian,- M1I.3 Eto, Motohiko,- M3Z.2, W4H.6 Evans, Peter,- W3H.1

F

Fabrega, Josep Maria, - M4G.2 Fan, Chun-Yuan,- Tu3B.2 Fan, Cunzheng,- Tu3G.3, W1J.6 Fan, Jingyang,- W2B.21 Fan, Linsheng,- W2B,17 Fan, Qirui,- W4F.1 Fan, Runzhe,- Th1E.6 Fan, Wei-Cheng,- Tu3J.2 Fan, Xuhao,- W1J.3 Fan, Yang-Hang,- M3I.4 Fan, Yuchuan, - Tu3I.1, W2B.12, Th1H.1, Th2A.32 Fang, Miaomiao,- W4J.2 Fang, Tzu-Yuan,- W1A.7 Fang, Zhuoran,-W3G.3 Fard, Saeed,- M3Z.18 Farrel, Adrian, - M3Z.9 Farrington, Kristopher,- W4K.4 Faruk, Md Saifuddin,- Th2A.21 Fatema, Tasneem,-W2B.2 Fathololoumi, Saeed, - Tu2E.4, Th3B.1 Fecioru, Alin,- Th3B.5 Fedoryshyn, Yuriy,- Tu3C.3 Fehenberger, Tobias,- Tu2F.2 Feng, Flame,- Th3A.2 Feng, Hao,- W2B.29 Feng, Kai-Ming,- Tu2J.4 Feng, Lipeng,-Tu3E.6 Feng, Zhongshuai,- W4H.5 Ferdousi, Sifat,- M1G.4 Fernandes, Gil,- Th3H.5 Fernandes, Marco,-Th1E.4, Th3H.5 Fernández, Manuel, - M1J.7

Fernandez-Palacios, Juan Pedro,-M3Z.9, Tu2D.5 Ferrari, Alessio,-W4G.6 Ferrari, Giorgio,- M3C.2 Ferraro, Filippo,- W3D.5 Ferreira, Filipe,- W3E.2, W3E.5, Th1F.3, Th2A.31 Ferri, Giuseppe, - M2B.3, M2B.4, M4G.3 Fice, Martyn,- Th2A.33 Fink, Eric,- Th3E.4 Fiorentino, Marco,-W1A.2, W1A.5 Fischer, Johannes Karl,- M2E.3, M3G.2, M3Z.3, M3Z.4, W4G.2 Fludger, Chris,-W1E.1, W3H.1 Fokoua, Eric Numkam,- W4D.2, W4D.3, W4D.4 Fontaine, Nicolas, - M1A, M2B.4, M3G.5, M3J.3, M3Z.11, Tu3E.3, Tu3G.4, W1C.3 Forestieri, Enrico,- Th3E.2, Th3E.5 Forghieri, Fabrizio, - Tu3I.4, Th2A.23 Formiga, Daniel,- Th1E.4 Förster, Klaus-Tycho,- M3Z.7 Forysiak, Wladek,- Th1B.7 Francou, Laurent,- W3I.1 Frazão, João,-W2A.37 Freire, Pedro, - M3G.3, Th1F.7 Freund, Ronald, - M2D.5, M2E.3, M3F.6, M3G.2 Frignac, Yann,-W1E.7, W3E.1, W3E.4, Th1E.3, Th3F.4 Frish, Harel,- Th3B.1 Froberger, Kevin,- M4C.5 Fu, Binzhang, - M2A.4 Fu, Mengfan, - Tu2J.5, Th1F.6 Fu, Mingye, - M3I.4 Fu, Songnian, - M2C.3, W2A.22 Fu, Yuan Hsing,- M4I.3 Fujii, Takuro, - M4E.2, Tu2B.5 Fujii, Toshiyuki,- Th2A.10 Fuiikata, Junichi,- Tu3C.4 Fujisawa, Takeshi, - M1C.4, M3B.4 Fujita, Masayuki,- Th11.3 Fujiwara, Naoki, - M4C.4 Fukatani, Takafumi,- M4G.1 Fukuchi, Yutaka,- W2A.17 Fukuda, Hiroshi,- Tu2B.5 Fumagalli, Andrea, - M3Z.14, Th2A.18 Fung, Yiki,- Th3C.3 Furdek, Marija,- M3Z.12

Furukawa, Hideaki,- M3C.5, Tu3E.3 Futami, Fumio,- M2I.6, W4C.4

G

Gaillard, Georges,- Tu3F.1, Th1G.3, Th3G.3 Galdino, Lidia,- W2A.29 Galib Reza, Ahmed, - Th2A.27 Galili, Michael, - M1B.5, W2B.22 Galimberti, Gabriele,- W1E.6 Gall, Martin, - Th1A.5 Galtarossa, Andrea, - M2F.3, W1C.3, W4D.3 Ganguli, Arijeet,- Tu3F.2 Ganzer, Felix, - M2D.5 Gao, Feng.- M1G.5, W1H.5, Th3B.3 Gao, Hanyu,-W4G.1 Gao, Junyi,- W2B.2 Gao, Shoufei,- W4D.1, W4D.6, W4H.7 Gao, Yun,- M4I.2 Gao, Yuyang, - M4E.5, W4D.6, W4H.7 Gao, Zhenggi,- W2A.35 García Cortijo, Sergi,- M1J.1 Garcia Gunning, Fatima,- Tu3D.6, Th3F Garcia-Blanco, Sonia,- Tu2B.3 Gariah, Harry,- M1C.5 Garrett, Lara,-W1C Garuz, Richard, - Tu2G.2 Gasulla Mestre, Ivana,- M1J.1, M4B Gatto, Alberto, - M2B.3, M4G.3, Tu2D.7 Gaudette, Jamie,- W3H.2 Gaudino, Roberto, - Tu3I.4, Th1G.2 Gavignet, Paulette,- Tu3H.2 Gay, Mathilde,- Th3G.1, Th3G.3 Ge, Chang,- Th2A.9 Ge, Dawei,- W2A.24, W2B.16, W3D.4, W4D.6, W4H.7 Gehring, Tobias,- M2I.2, Th3J.2 Geiselmann, Michael,-W2B.2, W3B.3 Geitz, Marc,- W4K.1 Genay, Naveena,- Tu2A.3 Genovese, Marco,- M2I.1 Georgiadis, Petros,-W4F.4 Gerfers, Friedel, - M4E.1 Geuzebroek, Douwe,-W1B.1, W3B.2 Ghazisaeidi, Amirhossein, - M2E.4, W4H.2 Ghobadi, Manva, - M2A.2 Giambra, Marco Angelo, - M3D.1

Giamougiannis, George, - M2J.3, Tu3B.3, W3G.1, Th3D.4 Gibson, Ursula,- M4B.6 Giewont, Ken,- Th1A.5 Gifre, Lluis,- M3Z.12, M3Z.9, Tu3D.3, Tu3D.5 Gilardi, Giovanni, - M1E.5, Tu2E.4 Giorgetti, Alessio, - M3Z.13, Tu3D.4 Giorgi, Luca,-M3D.1 Giridharan, Vishal,- W2A.2 Girouard, Peter,- W2B.22 Glick, Madeleine,-W1G.1 Goh, Takashi,- M3J.2 Gokhale, Milind, - M4C.1 Golani, Ori,- W2A.28 Goldstein, Jordan, - M4I.2 Gomes, Nathan, - Tu2J.3 Gomez, Brandon,-W3D.3 Gong, Siyu,- W2B.17 Gonzalez de Dios, Oscar,- M3Z.9, Tu2D.5 Gonzalez, Pol,-M3G.1, M3Z.4 Gopal, Vignesh, - M4E.4 Gordienko, Vladimir,- Th2A.12 Goto, Yuta,- M3C.5 Gou, Zhimu,- M3J.5 Govdeli, Alperen,- Tu3C.5 Graba, Tarik,- Th3D.2 Graell i Amat, Alexandre,- Th1G.5 Grangier, Philippe,- M1I.2 Grant, Andy,- Tu3H.2 Graziosi, Fabio, - M2B.3, M4G.3, W3F.4 Green, Andre,- Th2A.16 Greenberg, James,- Th11.4 Grenier, Jason,- Th1A.4 Griesser, Helmut,- M2G.4, W3H.6 Grimaldi, Vittorio,- M3C.2 Grimes, Andrew, - Th3C.7 Grobe, Klaus,- W3H.6 Grona-Gardom, Brandon Hunter,-Th2A.18 Gross, Simon,- Th2A.4 Gruen, Markus, - Tu3I, 1, W2B, 12 Grüner-Nielsen, Lars,- M1B.5 Gu, Huaxi,- Th3D.1 Gu, Jiahua,- Tu3D.1 Gu, Rentao, - Tu2F.3, Th2A.19 Gu, Xiaodong,-W4B.3, Th2A.9 Guan, Binbin,- W3H.2 Guan, Pengyu,-W2B.22

Guan, Xun,- Tu2B.2 Gubenko, Alexey,- M4C.6 Gudepu, Venkateswarlu,- W3F.4 Guermandi, Davide,- W3D.5 Guerra, Gianluca,- W4D.3 Guerrier, Sterenn,- W1J.5 Gui, Tao,-W3D.4 Guiomar, Fernando,- M4F.1, Th3H.5, W3E.1, Th1E.4, Th3E.1 Gul, Gamze,- Tu3H.4 Gumaste, Ashwin, - M3Z.15, Tu2D.1, Th2A.17 Gunawan, Wahyu Hendra,- M4F.5 Guo, Bingli,-W2B.9, Th1D.1 Guo, Cheng,- W2A.31, Th1B.2 Guo, Hao,- Tu3E.6, Th1E.6 Guo, Hongxiang, - M3J.4, Th3E.6 Guo, Qiang, - M1B.3, W3E.7 Guo, Qingyi,- W2A.27 Guo, Xiangwen,- W2B.2 Guo, Xiaoyuan,- W2A.4 Guo, Xueshi,-W3C.3 Guo, Yi,- M3J.4 Guo, Yuanzhi,- W2B.9, Th1D.1 Guo, Yuyao,- M3F.7 Gurumoorthy, Vivek,- W2A.2

Н

Haarlammert, Nicoletta,-W4C.1 Haas, Harald, - W1B.3 Habegger, Patrick,- W3I.1 Habif, Jonathan,- W2A.32 Haddad, Thomas,- Tu3J.3 Hadi, Ali, - M3Z.16 Hadi, Muhammad, - M3Z.16 Hafermann, Hartmut,- W1E.7 Häger, Christian, - M1F.4 Hahn, Choloong,- W1H.2 Hajomer, Adnan, - M2I.2, Th3J.2 Halder, Arindam, - Th3C.2, Th3C.5 Hamaoka, Fukutaro, - M1F.2, W4E.5, Th3F.2 Hamzeloui, Sara,- Th2A.7 Han, Liuyan,- W1F.4, W2B.16, W3D.4 Han, Mengyao,- W2B.12, Th1H.1, Th2A.32 Han, Shaobo,- W1J.7 Han, Yanjun,- W1A.4 Han, Youngtak,- W4B.4 Hanzo, Laios, - Th3F.5 Hao, Zhibiao,- W1A.4

Harada, Shun,-W4C.4 Harel, Alon, - M2J.6 Hariharan, Anand, - Th3C.7 Harper, Paul,- Th1B.7 Harrington, Mark, - M1E.3, M3J.3, Th3A.2 Hasegawa, Hiroshi, - M4G.4, M4G.8 Hasegawa, Takemi, - M1B.4 Hashemi Talkhooncheh, Arian,- M1E.6 Hashimoto, Toshikazu, - M3J.2 Haße, Hendrik, - M3G.2, M3Z.3 Hattink, Maarten, - M4E.4 Hawkins, lan,- W4K.4 Hayashi, Tetsuya,- Tu2C.2, W1J.5 Hazarika, Pratim,- Th1B.7 He, Bibo,- Tu2J.2 He, Guoliang,- W2B.18 He, Huan, - M2C.3 He, Junwen,- W3D.5 He, Peili,- W4H.5 He, Tao,- W2B.23 He, Yan,- Tu2F.5, W1J.4 He, Yichen,-W3E.7 He, Yongqi,- M4E.5 He, Yuqian,- W4J.1 He, Zhixue,- W4H.5, Th3H.2 He, Zuyuan, - M1C.7, Tu3J.6 Hecht, Urs,- M4E.1 Heck, John,- Th3B.1 Hedaraly, Farana, - Tu2G.4 Heffernan, Brendan,- Th1I.4 Heidt, Alexander,- Th1B.5 Hein, Sigrun,- W4C.1 Heinsalu, Siim,-Th2A.6 Hejda, Matej,-W3G.6 Helal, Belal,- W2A.2 Helin, Philippe,- Th3B.5 Hella, Mona,- W2A.5 Helsten, Robin,- Th3J.6 Heni, Wolfgang,- Tu2E.5, W3I.1 Henriksson, Johannes,- Tu3B.2 Hernández Gutiérrez, José Alberto,-Tu2D.5 Hernandez-Chulde, Carlos,- Tu3D.7 Herrera, Luis Ernesto,- W3J.2 Hersent, Romain,- Tu3I.3 Hilweg, Christopher, - M1A.1 Hinojosa, Alberto, - M1I.3 Hiraki, Tatsurou,- Tu2B.5 Hirama, Takao,- Tu2C.2 Hirano, Akira,- Th1H.2

Hirokawa, Takako,- Th1A.5 Hirose, Kenta,- M4G.1 Hirota, Yusuke, - M1G.4, M3C.5 Hisano, Daisuke,- Th3H.7 Hjelme, Dag Roar,- W1J.2 Ho, Cheng-Ru,- W2A.2 Hoang, Tim,- M4E.4 Hoban, Matty,- W4K.2 Hoenl, Simon,-W4B.5 Hoessbacher, Claudia, - Tu2E.5, W3I.1 Hojo, Naoya,- W2A.11 Hokama, Yohei, - M2D.2 Hong, Xiaobin,- Th3E.6 Hong, Xu,- M3D.2, W2B.24 Hong, Yang,- W4D.5, W4H.2, Th3F.5 Hong, Yifeng,- W4D.1 Hong, Ying-Kai,- M4F.3 Honz, Florian, - M1I.5, W3I.3, W4J.6 Hooten, Sean,-W3G.4 Hori, Takashi,- Th1I.4 Horino, Kazuhiko,- W1A.3 Horng, Tzyy-Sheng,- M3F.2 Horst, Yannik,- W3I.1 Hosako, Iwao,- Th1I.5 Hoshi, Megumi, - M2B.2, M2B.5 Hoshida, Takeshi, - M3Z.2, W1E.4, W1E.5, Th1E.5, Th3F.3, Th3F.6 Hosokawa, Kohei, - M4G.4, M4G.7 Hosseini, Kaveh,- M4E.4 Hotta, Yuji,- M4G.7, M4J.4 Houghton, Thomas,- Th1A.5 Houtsma, Vincent,-W1I.1, Th1G.1 Hraghi, Abir,- Th1E.3 Hu, Jianyong,- Th3J.3 Hu, Qian,- W4G.7 Hu, Qianggao, - Tu2G.7, W2B.18 Hu, Shuren, - M3F.5 Hu, Ting,- W2B.1 Hu, Weisheng,- Tu2J.2, Tu2J.5, Th1F.6, Th3G.5, Th3H.2 Hu, Weiwei,-Tu2J.2 Hu, Xiao, - M2J.4, Th3B.2 Hu, Yixiang,- Th3E.7 Hu, Zhouyi,- W2A.30 Hu, Zihe, - M3E.3, Th2A.28 Hua, Bingchang,- Tu3J.1, Tu3J.7, W2A.20, W3F.2, W3F.3, W4J.2 Hua, Xin,- M2J.4 Huang, Changle,-W2B.26 Huang, Chao,- Tu2G.7 Huang, Duanni,- Tu2E.3

Huang, Guanhao,-W4B.5 Huang, Guoxiu,- Th1E.5 Huang, Jack,- W2A.8 Huang, Liyan,- Tu2G.7 Huang, Mengyuan, - Tu2E.4, Th3B.1 Huang, Qikai,- M3F.1 Huang, Shanguo,-W2B.9, Th1D.1 Huang, Sheng-Lung,- Th3C.4 Huang, Shuailuo,- M4E.5 Huang, Wei,- Th3J.4 Huang, Wei-Ta,- W1B.4 Huang, Xin,- W4D.5 Huang, Xue,-W3G.3 Huang, Yishen,- W3D.2 Huang, Yongming,- Tu3J.1 Huang, Yu,- W2A.1 Huang, Yuan-Hung,- W1A.7 Huang, Yue-Kai,- W3H.4 Huang, Zhanhua, - M1B.3, M3C.7, W2B.5, W3E.7 Huang, Zhihong,-W1A.2, W1A.5 Hübel, Hannes,- M1I.5, W3I.3, W4K.1 Hui, David,- Th3B.1 Hui, Rongqing,-W4C.2 Hulme, Jared,-W1A.5 Hung, Yung-Jr,- M3F.2 Hung, Yu-Ying,-W1A.7 Huo, Xiaoli,- Tu3E.6, W4G.7 Hupel, Christian,-W4C.1 Hurley, Jason,- Th3F.7 Hurtado, Antonio,- W3G.6 Hwang, Sheng-Kwang,- M3D.5

Ichihara, Satoru,-W2A.11 Ichii, Kentaro, - M3B.5, Tu2C.4 Ide, Satoshi,- M3E.4 Igarashi, Koji,- Tu3E.5, Th1F.1 Igarashi, Ryo,-W3F.5 Ikeda, Kazuhiro, - M4J.2, M4J.5, Th1A.3 Imada, Ryota, - M3B.1, W1C.2 Imai, Hiromitsu, - M3J.2 Inac, Mesut,- M3I.3 Inada, Yoshihisa,- W1J.7 Inniss, Daryl,- Th2A.20, Th3C.1 Inohara, Ryo,- Th2A.35 Inoue, Ayumi,- Tu2C.2 Inoue, Daisuke,- M4C.4 Inoue, Takanori,- W1J.7

Key to Authors

M4J.5, Th1F.2 lp, Ezra,- W1H, W3H.4 Ipponmatsu, Masamichi,- Th1H.2 labal, Md Asif,-W3H.3, Th2A.14 Irie, Hiroyuki,- Th3F.6 Irimajiri, Yoshihisa,- Th11.5 Ishii, Kiyo,- M1G.4 Ishijima, Tatsuki,- W4C.4 Ishikawa, Hiroshi,- Th2A.6 Ishikawa, Tsutomu,- Th2A.8 Ishimaru, Takahiro,- W3J.1, W3J.6 Ishimura, Shota,- Tu3E.2 Isichenko, Andrei, - M1E.3, Th3A.2 Itabashi, Naoki,- Th2A.8 Iwamatsu, Shuya,- Tu3J.3 Iwasaki, Katsuhiro, - M4J.2 lyer, Amrutha,- W2A.2

Inoue, Takashi, - M3C.4, M4J.2,

J

J, Sridharan,- W3H.2 Jahanbozorgi, Mandana,- Th3J.7 Jain, Jeetesh,- W3H.2 Jain, Nitin,- Th3J.2 James Singh, Konthoujam,- W1B.4 James, Aneek,-M4I.1, Th3A.4 Jang, Kaylx, - M4I.1, Th3A.3, Th3A.5 Jansen, Sander, - M2G.4, M3Z.7 Jantzi, Steve,- W2A.2 Jany, Christophe, - M4C.5 Jaouen, Yves,- W3E.3 Jara, Nicolás,- W2A,19 Jarmolovičius, Mindaugas, - M3Z.1, W2A.29 Jaurequi, Cesar,-W4C.1 Javad-Kalbasi, Mohammad,- W2A.15 Jayakumar, Raja,- W4F.2 Jeffries, Alexander,- Tu3D.6 Jennevé, Philippe,-W2B.16 Jensen, Richard,- M4J.1 Jeong, Dongin,- Th3J.7 Jervan, Gert,- W3H.6 Ji, Xiaofan,- W2B.5 Ji, Xiaoxue,- Tu3J.4 Ji, Yuefeng,- Tu2F.3, Th2A.19 Jia, Junlian,- W2B.26, W4J.5 Jia, Lianxi,- W2B.1 Jia, Xiaoshuo,- Th3E.6 Jia, Yingiu, - M3G.4, W2B.8 Jia, Zhensheng,-W1I.2, W1I.4 Jian, Xu,- Tu2G.7, W2B.18

Jian, Yin-He,- M4F.3, M4F.5 Jiang, Chendi,-W3D.4 Jiang, Hexun, - Tu2J.5, Th1F.6 Jiang, Ning,- Th3H.4 Jiang, Xiaoging,- Tu3I.6 Jiang, Xiaotian,- M2F.5 Jiang, Xingyi,- W2B.21 Jiang, Zhiping, - M2E.2, W1H.2, W2A.27, Th3C.3, Th3C.6 Jiang, Zile, - M3F.4 Jiao, Yuqinq,- M1C.1, Tu3I.3 Jin, Cang,- Th3C.7 Jin, Jae Hyun,- Tu2B.4 Jin, Naijun,- Th3A.2 Jin, Yan,- Th1B.6 Jin, Yongchao,- Th3H.2 Jin, Yu,- M1G.5 Jing, Yinji,-W1F.2 Jing, Yumang,- Th3J.5 Jinno, Masahiko,- M4G.7 Joharifar, Mahdieh, - Tu3I.1, Tu3I.3, Th1H.1, Th2A.32 Johnson, Betsy,- Th1A.4 Johnson, John,- M2D.3 Johnson, Lee,- Tu3H.2 Jones, Richard, - Tu2E.4 Josefsson, Borje,- Tu3G.4 Joshi, Siddarth Koduru,- W4K.3, W4K.5 Jung, Yong-Min,- W4D.5 Jungnickel, Volker,- M3F.6, M4F.6, Tu3I.2 Justison, Patrick,- Th1A.5 Jyo, Teruo, - M1F.2

Κ Kaeval, Kaida,- Tu2F.2, W3H.6 Kageshima, Hideo,-W3H.4 Kaqeyama, Takeo, - M2D.4 Kahn, Joseph,- M2B.6 Kajikawa, Shota, - M3B.5, Tu2C.4 Kakitsuka, Takaaki, - Tu2B.5 Kakizaki, Takeshi, - W4E.5 Kakkar, Aditya,- W1E.1, W3H.1 Kalavrouziotis, Dimitrios,-W3G.1 Kalosha, Vladimir.- M4C.8 Kamalov, Valey,- W1H.1 Kamisugi, Harold,- M4C.4 Kan, Takashi,- Tu3E.2 Kanakis, Giannis,- Tu3I.3 Kanazawa, Shigeru, - M4E.2, Th1E.7

Kaneko, Shin,- W3F.5 Kang, Chun Hong,- W4C.6 Kang, Hyungryul, - M3I.4 Kani, Jun-ichi,- Tu3F.4, W3F.5, Th1G.4 Kanno, Atsushi, - Tu2J.1, W2A.34, W3F.6, W3I.2, W4E.3, Th1H.2, Th11.5 Kanter, Gregory, - M3Z.5, Tu3H.3, Tu3H.4, W3C.2, W4K Karagiannis, Thomas, - Tu2A.4 Karapetyan, Narek,-W2A.32 Karinou, Fotini, - M3A, W3B Karlicek, Robert,- W2A.5 Karlsson, Magnus,- Tu3G,4 Karlsson, Stefan,- M3Z.6 Karra, Vaishnavi,- Th1A.5 Kasai, Keisuke, - M3D.7 Kashima, Kazuhiko,- W4B.1 Kashinkunti, Prethvi,- Th2A.15 Kashiwazaki, Takahiro,- Th3F.3 Kato, Kazutoshi,- M3D.4 Kato, Kentaro,- M2I.6 Kato, Takashi, - M4J.2 Kato, Takatoshi,- Th2A.8 Kato, Tomoyuki,- Th3F.3, Th3F.6 Katori, Hidetoshi, - M3J.2 Katsuhara, Ryumi,- Th2A.6 Katsuo Oxenløwe, Leif,- M2I.4, W2B 22 Kauffman, Ariel, - Th1A.6 Kaushal, Saket,- M1J.7 Kawaguchi, Yuki,- M2I.6 Kawai, Akira, - M4B.4, Th3F.3 Kawakami, Akira,- Th11.5 Kawamoto, Keiji,- Tu2C.2 Kawanaka, Takanori,- Th3G.4 Kawanishi, Tetsuya, - M3D, Tu2J.1, W2A.34 Kawasugi, Masahiro, - M4J.4 Kawmoto, Yuma,- Th1I.4 Kazama, Takushi, - M4G.1, Th3F.3 Keller, Killian,- W3I,1 Kerrebrouck, Joris, - M2J.3 Kettimuthu, Rajkumar,- Tu3H.3 Khaled, Ahmed, - M3J.5 Khan, Farooq,- Th3C.1 Khan, Lareb Zar,- M3G.3 Khan, Md Mahasin,- M2E.3 Kharas, Dave,-W1B.5 Khilwani, Devesh,-M3I.1 Kikuchi, Masashi, - M3B.6, M4B.1

Kikuchi, Takahiro,- M1B.4 Kikuta, Masahiro,- Tu3E.5 Killey, Robert, - M3F.3, W2A.29, W3E.2, W3E.5, Th1F.3 Kilper, Daniel, - M3A, Tu2F.2, W1F, W3H.4, Th2A.1 Kim, Inwoong,-M3Z.2, W4H.6 Kim, Jung Hoon,- Tu2B.4 Kim, Kap-Joong, - M1I.4, W2A.36 Kim, Ki Soo,- Tu2B.4 Kim, Kwangwoong,- M1C.5 Kim, Minchul, - M1I.4, W2A.36 Kim, Minkyu,- W3D.5 Kim, Myung-Ki,- Tu3B.2 Kim, Sang-Yuep,- Tu3F.4, Th1G.4 Kim, Seoktae,- W4B.4 Kim, Taehwan,- Tu2E.3 Kim, Yoon-Ho,- W3C.6 Kimura, Toshio,- W2A.11, Th1B.1 King, Daniel, - M3Z.9 Kinoshita, Susumu,- Th2A.9 Kinoshita, Yusuke,- M4J.2 Kippenberg, Tobias,-W4B.5 Kiriyama, Tomoaki,- M4J.2 Kirtas, Manos,-W3G.1 Kisaka, Yoshiaki, - Tu3I.5, W1H.4, W4E.5, Th3F.2 Kishi, Toshiki,- M4E.2 Kishimoto, Tadashi,- Th11.5 Kitavama, Ken-ichi,-W3F.6, W4E.3 Kito, Katsuya,- M4J.2 Klawson, Daniel,- Tu3B.2 Klenke, Arno,-W4C,1 Klos, Thomas,-W1B,1 Knittle, Curtis,-W1I.2, W1I.4 Ko, Wing, - M3F.4, W2A.32 Ko, Young-Ho,- W2A.36 Kobayashi, Takayuki,- M1F.2, M4B.4, M4G.1, Th3F.2, Th3F.3 Kobbi, Hakim,-W3D.5 Kobierowski, Cristina Marie,- Th2A.18 Koch, Stephan, - Tu2E.5 Koguchi, Ryo,-W1E.2 Kohli, Manuel,- Tu3C.3 Koike, Yoshifumi,- W2A.10 Kojima, Kazunobu,- Th1H.2 Kolev, Dimitar,- Th1H.3 Konczykowska, Agnieszka,- Tu3I.3 Kondepu, Koteswararao,- W3F.4 Kondo, Kazuya, - M3D.4 Kong, Jian,- W3A.5, W3H.2

Kong, Miao,- Tu2G.6 Konoike, Ryotaro, - M3C.4, M4J.2, M4J.5, Th1A.3 Koonen, A.M.J.,- M4F.4 Kopp, Victor,- Tu2C.4 Kose, Bulent,-W2A.1 Koshikiya, Yusuke, - M4B.2, W1C.1, W3J.1, W3J.6 Kottke, Christoph,- M2D.5, M3F.6, M4F.6, Tu3I.2 Kou, Rai,-W3G.2 Kovacs, Istvan,- Th2A.21 Kovaios, Stefanos, - M2J.3 Koyama, Fumio,- Tu2E, W4B.3, Th2A 9 Koyasako, Yushi,- Tu3F.4 Krasulick, Stephen,- W3D.2 Krause, Jan,-W3C.4 Kravchenko, Daryna,- Tu2G.4 Kremp, Tristan,- Tu2C.1 Krüger, Benjamin,- Tu3I.1, W2B.12 Kschischang, Frank,- M1F.1 Ksentini, Adlen, - M3Z.8 Kuchta, Daniel, - M4E.6, Th1D.3 Kuhn, Stefan,-W4C.1 Kuklewski, Michal,- Th2A.34 Kulmer, Laurenz,- Tu3C.3, W3I.1, Th2A.7 Kumagai, Seiji,-W1A.3 Kumar, Ankur, - M3I.4 Kumar, Prem, - M3A.1, M3Z.5, Tu3H.3, Tu3H.4 Kumar, Ranjeet,- Tu2E.3 Kumar, Sushant,- M3C,1 Kunjappa, Rohit, - M4J.1 Kuno, Takuma,- M4G.8 Kuno, Yuki, - M4G.7, M4J.4 Kuo, Chin-He,- W1A.7 Kuo, Hao-Chung,- W1B.4 Kurczveil, Geza,-W3G.3, W3G.4 Kurimoto, Takashi,- Th2A.13 Kurokawa, Munetaka,- Th2A.8, W1A.3 Kurosu, Takayuki,- M3E.2 Kurth, Patrick,- M4E.1 Kuschnerov, Maxim,-W4E.1 Kutschera, Florian,- W4K.1 Kuwahara, Takeshi, - M4G.1 Kuyken, Bart,- Th3B.5 Kwapisz, Jaroslaw,- Th3E.4 Kwon, Oh Kee,- Tu2B.4

L Lal, Vikrant,- W3D.6 Lam, Cedric,- W3D.1 Lambert, Damien,-W3D.2 Lan, Yang, - Th3C.6 Lane, Brett,- W2A.1 Lardenois, Sebastien,- W3D.5 LaRochelle, Sophie,- Th3C.3 Larsson, Rasmus,- Th1B.4 Larsson-Edefors, Per.- M1F.4, Tu3G.4 Lasagni, Chiara,- W1H.3 Laske, Norman, - M3F.6 Lau, Alan Pak Tao,- Tu2F.5, W1J.4, Th3B.4 Lauinger, Vincent, - M2F.4 Lavery, Domanic,- Tu2G.1 Lavery, Martin, - Th3H.4 Lavigne, Bruno,- Tu2D.2, Tu2D.3, W4H.4 Lawson, Joey,- M3C.6 Layec, Patricia,- Tu2G.3 Lazovsky, David,- Tu3B.3 Le Gac, Dylan,-W3E.4, Th3F.4 Le Huérou, Stephane,- Tu3F.1 Le Kernec, Arnaud,- W3I.1 Le Monnier, Maël,-W4H.4 Le Taillandier de Gabory, Emmanuel,-M4G.7, W3E.6 Le, Son,-W4E.6 Ledenstov Jr., Nikolay,- M4C.8, M4E.1 Ledentsov, Nikolay,- M4C.8, M4E.1 Lee, Chengkuo,- M4I.3 Lee, Chul Wook,- Tu2B.4 Lee, Donghyo,- W4B.4 Lee, Hansuek,- Th3J.7 Lee, Kim, - M3Z.5, W3C.2 Lee, Lennon,- M4I.3 Lee, Mark,- Th3C.1 Lee, Seoyoung,- W4B.4 Lee, Sunwoo,- M3I.1 Lee, Wook-Jae,- W2A.36 Lee, Yi-Shan,- W1A.7 Lei, Mingzheng,- Tu3J.1, Tu3J.7, W2A.20, W3F.2, W3F.3, W4J.2 Leich, Martin,- Th2A.7 Leidner, Jordan, - M3C.6 Lemme, Max.- M2E.3 Lemmi, Gianmarco,- M2I.4 Letellier, Vincent,- Tu2G.5 Leuthold, Juerg,- Tu2E.5, Tu3C.3, W3I.1, Th2A.34, Th2A.7

Lévêque, Simon,-W3I.1 Levi, Filippo,- M2I.1 Li, Benjamin,- M4C.1 Li, Bing, - M1F.3, M1F.5 Li, Binghui, - M3C.8, M4F.2, Th3A.6 Li, Bo,- M4I.3 Li, Borui,- W2B.11 Li, Changsheng,-W3D.4 Li, Chao,- Th3B.3 Li, Chenlei,- Th2A.22 Li, Chenyang, - Th3J.3 Li, Chuandong,- W2A.26, W2A.27, Th2A.25 Li, Chung-Yi,- Tu3J.2 Li, Fan,- Th1E.2 Li, Guoqiang,- W1I.3, W1I.5, W2B.26, W4J.5 Li, Haiyuan,- W4G.4, W4G.5 Li, Han,- W1F.4, W2A.13, W2B.16, W3D.4, W4D.6, W4H.7, Th2A.20 Li, Hao,- Tu3G.3, W1J.6, W2B.23, W3J.4 Li, He,- M2I.3 Li, Hongtao,- W1A.4 Li, Huan,- Th3A.7 Li, Jianping,- W2A.22 Li, Jiangiang,- M2F Li, Jin,- M3G.4, Tu2F.4, W2B.8, Th1F.5 Li, Jingchi,- M2F.2 Li, Juhao,- M4E.5 Li, Junjie,- Tu3E.6 Li, Junwei,- W2A.13, Th2A.20 Li, Liangye,- W1J.3 Li, Ming,- W2B.18 Li, Ming-Jun,- Tu1A Li, Nan,- W4J.1 Li, Niangiang,- W4J.3 Li, Peixuan ,- W2B.27 Li, Qinru,-W3F.3 Li, Qiyuan,- M4I.4 Li, Shanglin,- W2A.24 Li, Shengnan,-W1H.5, W3H.5 Li, Shuo,- Th3D.1 Li, Tongyun,- W3I.6 Li, Wei,- M1B.3, W4H.5 Li, Weihao, - M3E.3, Th2A.28 Li, Weijia,- W2A.21, Th2A.5, Th3E.7 Li, Weiping,- Tu3J.4, Tu3J.5, W2B.25, Th11.2 Li, Wen Qi,-W3C.3 Li, Wenhao, - M1B.3

Li, Xiang,- M4C.7 Li, Xiaoying,- W2B.6, W2B.29, W3C.3 Li, Xingfeng,- M2F.2 Li, Xueyang,- Th3H.2 Li, Yajie,- Th1D.2 Li, Yan,- Th3E.6 Li, Yanbo,- M4C.2 Li, Yang,- W1J.7, Th3J.4 Li, Yingzhi,- W3I.4 Li, Yunbo,- W1F.4, W2B.16, W3D.4 Li, Yunxuan,- Th2A.19 Li, Zhaohui,- Tu2D.4, W2A.25, W4G.1, Th1E.2 Li, Zhaoyi,- W2B.1 Li, Zhenhua, - M2J.2, W4H.3 Li, Zhongya,- Tu3I.6, W1I.3, W1I.5, W2B.26 Li, Ziwei,- W2B.26 Lian, Weihua,- W4H.5 Liang, Di,- W1A.5, W3G.3 Liang, Dong,- W3I.5 Liang, Dou,- Tu2F.5 Liang, Yize,- Tu3I.7 Liang, Yue,- Tu2C.1 Liao, Bin-Kai,- M3D.5 Liao, Ling,- Th3B.1 Liao, Sean, - M1E.5 Liboiron-Ladouceur, Odile,-W3G.5 Lichtman, Eyal, - M2G.2 Lida, Daisuke,-W3J.1, W3J.6 Liga, Gabriele,- M1F Lihachev, Grigorii,- W4B.5 Liljeberg, Thomas,- Th3B.1 Lim, Caroline,- M2I.5, W3I.1 Lim, Kyongchun, - M1I.4, W2A.36 Limpert, Jens,- W4C.1 Lin, Chena-Jun, Tu3J.2 Lin, Di,- M1B.2 Lin, Gong-Ru,-W1B.4 Lin, Huajiong,- Tu3J.4, W2B.25 Lin, Jiachuan, - M2E.2 Lin, Jing, - M4F.2 Lin, Jinping,- Th3J.5 Lin, Rui,- M3Z.6, M4A, Tu2H Lin, Shih-Chun,- M4G.8 Lin, Tao,- W3D.4 Lin, Tsung-Tse,-M3D.7 Lin, Wenhua,- Tu2E.4 Lin, Xiang,- M2E.2 Lin, Xiao,- Th1D.2 Lin, Yiding,- Tu3C.5

Lin, Youxi,-W4E.1 Lin, Yu-Sheng,- Tu3J.2 Lin, Zhenrui,- W4H.3 Lin, Zhonghong,-W2B.7 Lindberg, Hannah, - W3I.1, Th2A.34 Lindsey, Nate,-W1J.1 Lipson, Michal, - M4I,1 Lischke, Stefan,- M3I.3 Little, Brent,- W2B.29 Liu, Ansheng,- M1E.5, Tu2E.4 Liu, Bo,- M1F.5, Tu2G.6, W1E.1 Liu, Chen,-W4E.2 Liu, Chenggang,-W3D.4 Liu, Che-Yu, - M4G.5, W1G.2 Liu, Chuxin,- M3F.7 Liu, Daheng,-W3D.4 Liu, Deming,- M2C.2, W1E.3, W2B.11, W2B.14, W2B.20, W2B.23, W3J.5, W4E.2 Liu, Gordon Ning,- W2A.25 Liu, Hai-Feng,- Th3B Liu, Hao,- Tu3E.6, Th1B.3 Liu, Haoyan,- W2B.24 Liu, Hong,- M2G.1, W3D.1 Liu, Hudi,- M2F.2 Liu, Jiasheng,- Tu2G.7, W2B.18 Liu, Jiaxuan,- Tu3J.5 Liu, Jie, - M2J.2, W4H.3 Liu, Jungian,- M1E.5, Th2A.2 Liu, Jungiu,- W4B.5 Liu, Junyi,- W4H.3 Liu, Kaikai, - M1E.3, Th3A.2 Liu, Keren, - M1F.4 Liu, Rongwei,- Tu2J.2 Liu, Sheng,-W2B.16 Liu, Shuangyue,- W2B.15 Liu, Siai,-W4J.1 Liu, Songtao,- Tu2E.3 Liu, Weiwei, - M4F.2, Th3A.6 Liu, Weixi,- Th3A.7 Liu, Wu,- Th3E.6 Liu, Xiang,- Tu3F.6, Tu3J.7, W2A.20, W4F.1 Liu, Xuying,- M1C.7, Tu3J.6 Liu, Yang,- M4F.3, M4F.5, Th3J.6, Th3H.6 Liu, Yaping, - M1B.3, M3C.7, W2B.5, W3E.7 Liu, Yi,- W3I.6 Liu, Yifan,- W2B.19 Liu, Yunfei,- W1J.3

Liu, Yuyang,- Tu3E.6 Liu, Zhixin, - M1J.2, M3E.5, M3F.3, W2A.7, W3E.2, W4F.3, Th1B.5, Th1F.3 Lo, Guo-Qiang,- Tu3C.5, W3I.4, Th3B.3 Lo, Hoi-Kwona, Th3J.3 Lo, Mu-Chieh,- W2A.7 Lo, Yuen San,- W3C.5 Loh, William,- W1B.5 Loi, Chang-Feng,- W2A.2 Loi, Ruggero, - Th3B.5 Lonardi, Matteo,- W1H.3 Lončarić, Martin,- W4K.3 Long, Han,- Tu2G.7 Long, Jianyu,- Tu2G.6, Tu3J.5 López Grande, Ignacio, - M1I.3 Lopez, Diego,-W4K.1 Lord, Andrew,-W3A.1, W4K.4, Th2A.14 Lorences-Riesgo, Abel,-W3E.1, W3E.4, Th1E.3, Th3F.4 Lott, James,- M4F Lou, Guanlin,- M4C.7 Louchet, Hadrien,- Tu3I.1, W2B.12 Lourdudoss, Sebastian,- Th1H.1, Th2A 32 Loureiro, Pedro, - M4F.1 Lu, Chao,- Tu2F.5, W1J.4, W2A.25, Th3B.4 Lu, Dan, - Tu3J.6 Lu, Guo-Wei,- Tu3C.2, Tu3C.4 Lu, Hai-Han,- Tu3J.2 Lu, Liangjun,- M3F.7 Lu, Liwang,- W1J,4 Lu, Peng,- Tu3J.3 Lu, Rui,- W2B.4 Lu, Xiaosong,-W4D.1 Lu, Yunfeng,- Th3D.1 Lucamarini, Marco, - M2I.1, W3C.5 Luis, Ruben, - M2B.3, M4B.5, M4G.3, Tu3E.3 Luo, Ji,- W2B.15 Luo, Jianheng,- Tu3B.2 Luo, Jiating,- W2B.15 Luo, Jiawei,- Th3C.1 Luo, Ming.- M2J.4, W1E.3, W2B.14, W4H.5, Th1E.6, Th3E.6 Luo, Wei,- Tu3J.1, W4J.2 Luo, Xiangang,- Th3H.4 Luo, Xianshu,- Tu3C.5, W3I.4

Luo, Xiao,- M2F.5

Luo, Ying,- W4B.2

Luo, Yuan,- Th1B.5

Lv, Bin,- W2A.24

Lv, Kai,- Tu3E.6

Luo, Yuangiu,- Th3G

Luo, Yi,- W1A.4

Lv, Meijuan,- W2A.24 Lyu, zhidong,- W4J.1 Μ Ma, Chaoxuan,- Tu2E.3 Ma, Like, - Tu3J,1 Ma, Xiaoxuan,- M3J.5 Ma, Ziyan,- M4F.6 Ma. Zon.- Th3C.4 Maeda, Hideki,- W2A,17 Maeda, Shuntaro, - Tu3E.2 Maegami, Yuriko,- W3G.2 Maekawa, Keisuke, - Th11.4 Maes, Jochen,- W4F.5 Magdziak, Rafal,- W3D,5 Mahadevan, Amitkumar,- Th1G.1 Mahalingam, Hari,- Tu2E.4, Th3B.1 Maharry, Aaron, - M1E.5, Th2A.2 Mahendra, Andri, - M3Z.16 Maher, Robert,- Tu2G.1, W3H.1 Maheshwari, Praveen,- M2G.2 Maho, Anaëlle,- W3I.1 Mahony, Thomas, - W1B.5 Mai, Christian,- M3I.3 Maier, Guido,- M3Z.14 Maisons, Grégory,- Th1H.1, Th2A.32 Maiumdar, Arka, - W3G.3 Mak, Jason C. C.,- Tu3C.5 Mak, Jason, - M4C.5 Makarov, Oleg.- M4C.8 Makovejs, Sergejs,- M2E Malignaggi, Andrea, - M3I.3 Malouin, Christian,- Tu2E.4, Th3B.1 Mambretti, Joe,- M3Z.5 Manata de Oliveira, Beatriz,- Th3E.1 Mandal, Paulomi,- M1J.3 Mandalawi, Younus,- M1J.3 Maniotis, Pavlos,- Th1D.3 Manish, Sharma, Th3C.3, Th3C.6 Mann, Joel,- Th3C.1 Manolopoulos, Alexandros Ioannis,-W4F4 Manso, Carlos, - Tu3D, 5 Manuylovich, Egor,- Th2A.11

Mao, Deng,- Th2A.5 Mao, Jiawei, - Tu3C.2 Mao, Yuanfeng,- M4C.2 Marchenay, Marylise, - M4C.5 Marciante, John, - M3C.6 Mardoyan, Haik,- Tu3I.1, W1J.5, W4H.2 Margalit, Near,- W4B.2 Marin Mosquera, Juan,-W4C.6 Mariz de Carvalho, Pedro,-W3J.2 Marom, Dan, - M1C.3 Marotta, Andrea, - M2B.3, M2B.4, M4G.3, W3F.4 Marra, Giuseppe, - M1A.2, M2C.1 Martelli, Paolo, - M2B.3, M4G.3 Martin, Vicente,- W4K.1 Martinez Rodriguez, Fransisco,-Th2A.29 Martinez, Andres,- W3I.7 Martinez, Gonzalo,- Tu2D.5 Martínez, José Manuel, - M3Z.13 Martínez, Ricardo, - M3Z.9, Tu3D, Tu3D.3, Tu3D.5, Tu3D.7 Marulanda Acosta, Valentina,- M2I.5 Maruta, Kazuki,- Th3H.7 Maruyma, Katsuhisa, - M3B.2 Mas Machuca, Carmen,- Tu2F.2, Th2A.37 Mascarenas, David,- Th2A.16 Masoud, Fady,- W3H.1 Masuda, Akira,- Tu3I.5 Mateo, Eduardo,- Tu3G.2, W1J.7 Mathai, Sagi,- M4J Mathew, Neethu,- M1B.5 Mathieu, Yves,- Th3D.2 Mathur, Atul,-W1E.1 Matsui, Jun,- Th1E.5 Matsui, Junichiro,-W3E.6 Matsui, Takashi, - M2B.5, M3B, M3B.6 Matsui, Yasuhiro, - M3E.5, Tu3I.1 Matsumoto, Atsushi,- W3I.2, Th2A.6 Matsumoto, Keisuke, - M2D.6 Matsumoto, Ryosuke, - M3C.4, M4J.2, M4J.5, Th1A.3, Th1F.2 Matsumura, Hidetoshi,- W2A.15 Matsuno, Yusuke,- M4G.7 Matsuo, Shinji, - M4E.2, Tu2B.5 Matsushima, Yuichi,- Th2A.6 Matsuura, Hiroyuki, - M4J.5, Th1A.3 Matsuura, Motoharu,- M4G.8 Matter, Daniel, - W3I,1

Matthies, Jürgen,- Th1A.4 Mattivi, Maurizio,- W3I.7 Maxson, Ryan,-W1B.5 May, Alix,- Tu2G.3, W1H.3 Mayer, Kayol, - M1G.3, M3Z.10 Mazur, Mikael, - M2B.4, M3G.5, M3J.3, M3Z.11, Tu3E.3, Tu3G.4, W1C.3, W1J, W1J.5 Mazzini, Andrea, - M3Z.8 Mazzucco, Christian,- W3I.7 McCaully, Tom,- M2D.3 McConnell, Robert,-W1B.5 McCool, Roshene,- Th3F.1 McCurdy, Alan, - Tu2C.1 Mecozzi, Antonio, - M2B.3, M2B.4, M4G.3, W1J.5 Meda, Alice, - M2I.1 Medaer, Sacha,-W4D.4 Medeiros, Alex,-W1B.5 Medeiros, Maria do Carmo,- Th3E.1 Medra, Ahmed, - W2A.26 Mehta, Aditi,- M3B.2 Mei, Liang,- W4H.5 Mei, Muyang,- W4H.5 Meier, Janosch,- M1J.3 Meijueiro, Felipe,- W3J.2 Melle, Serge,- Tu2D.2 Mello, Darli, - M1G.3, M2B.6, M3Z.10, Tu3E.3, W4A.1 Melloni, Andrea, M3C.2, W3I.7 Melville, lan,- Th1A.5 Menezo, Sylvie,- M4C.5 Mentovich, Elad,- Tu3I.3, W3G.1, Th2A.15 Merget, Florian, - W1B.1, W2A.6 Messias, Adriano, - Th1E.4 Messner, Andreas, - Tu3C.3 Mestre, Miguel A.,- W2B.16 Mikhailov, Vitalv, - Th2A.20, Th3C.1 Mikkelsen, Jared C.,- Tu3C.5 Milanizadeh, Maziyar, - M3C.2 Milano, Michele, M3Z.9 Millar, David,- Th3E Miller, Aaron, - M3Z.5 Miller, David, - M3C.2 Milord, Laurent, - M4C.5 Minakhmetov, Arthur,-W4H.4 Minami, Haruka, - M4G.1 Minelli, Leonardo,- Tu3I.4 Minoofar, Amir, - W2A.32 Minotani, Tadashi, - M4E.2

Mirin, Richard,- Tu3C.6 Misak, Stephen,- M1E.5 Misawa, Taichi,- Th2A.8 Miseikis, Vaidotas, - M3D.1 Missey, Mark,-W3H.1 Mitaki, Masatoshi, - M2D.4 Mitchell, Arnan, - Tu3B,1 Miyagawa, Yuichi,- Tu2C.5 Miyagoshi, Ryosuke, - M2D.6 Miyamoto, Yutaka,- M1F.2, M2B.2, M2B.5, M4B.4, Th3F.2, Th3F.3 Miyamura, Takashi, - M4G.1 Mizoguchi, Makoto,- M4J.4 Mizuno, Yasutaka,- Th2A.8 Moehl, Charles,-W4B.5 Moehrle, Martin, - M2D.5, Tu3I.2 Mohammad Hosseini, Mohammad,-W2A.16 Mohammadi Kouhini, Sepideh,-M4F.6 Mohammadiha, Nasser,- W4G.3 Mohs, Georg,-Tu3G.1 Mojaver, Hassan, - W3G.5 Mokhtar, Ayman, - M1J.3 Molnar, Alyosha, - M3I.1 Momtahan, Paul,- Tu2D.1 Mondain, Francois,- Tu3H.2 Montanaro, Alberto, - M3D.1 Montaut, Nicola,- Th3J.6 Monteiro, Paulo, - M4F.1, W3E.1, Th1E.4, Th3E.1, Th3H.5 Monti, Paolo, - M1G, M1G.2, M3Z.6, M3Z.12, W4A Montri, Joseph.- W3I.1 Moody, Galan, - Tu3H.1 Moor, David,- Tu3C.3 Morales, Patricia,-W2A,19 Moralis-Pegios, Miltiadis, - M2J.3, Tu3B.3, W3G.1, Th3D.4 Morandi, Filippo,-W3I.7 Morandotti, Roberto,- Th3J.6 Moraw, Paul, - M3Z.5, W3C.2 Morette, Nathalie,-W4G.6 Morgan, Rachel,-W1B.5 Morgan, Ryan,- W3H.2 Mori, Takayoshi, - M2B.5, M3B.1, M3B.6, M4B.1 Mori, Yojiro, - M4G, M4G.4, M4G.8 Morichetti, Francesco, - M3C.2, W3I.7 Morioka, Toshio, - M3B.2 Moriwaki, Osamu, - M3E.4

Morohashi, Isao,- Th11.5 Moschos, Theodoros, - M2J.1 Moscoso-Mártir, Alvaro,- Th1F.4, W2A.6 Mourgias-Alexandris, George,-W3G.1 Movaghar, Ghazal, - Th2A.2 Moy, Dan, - Th1A.5 Mu, Xin,- Tu3C.5 Mueller, Jasper,- Th2A.37 Muga, Nelson,-Th3H.5 Mukai, Okimi,- Tu2C.4 Mukasa, Kazunori, - M3B.2, M3B.3 Mukherjee, Biswanath,- M1G.4 Müller, Jasper,- M3Z.7, Tu2F.2 Mulvad, Hans,-W4D.5 Mumtaz, Sami,-W3E.1, W3E.4, Th1E.3 Munakata, Ryuji,- M4G.8 Muñoz, Raul.- M3Z.9, M3Z.12. Tu3D.3, Tu3D.5, Tu3D.7 Mura, Alberto, - M2I,1 Murai, Shinya,- W4K.4 Muranaka, Hidenobu,- Th3F.6 Murray, Richard, - M2G.3 Muth, Karl,-W4B.2 Mutou, Miwa,- M1F.2

N

Na, Quanxin,- W3I.4 Nada, Masahiro,- Th1E.7 Nadal Reixats, Laia, - M4G.2 Nader, Nima,- Tu3C.6 Nagai, Kyoko,- W4B.1 Nagarajan, Gaya,- W3A.4 Nagasawa, Yosuke,- Th1H.2 Nagashima, Takuii, - Tu2C.2 Nagatani, Munehiko,- M1F.2, M4E.2 Nagatsuma, Tadao,- Th11.3, Th11.4 Najafi, Hossein,- W2A.26 Nakada, Kyousuke,- M4G.7 Nakagawa, Masahiro, - M4G.1 Nakagawa, Mayu, - M3B.4 Nakai, Yoshihiro,- M2D.4 Nakajima, Dai, - M3D.7 Nakajima, Kazuhide, - M2B.5, M3B.1, M3B.6, W1C.2 Nakajima, Ryosuke,- M2D.7 Nakajima, Takayuki,- M2D.7 Nakamori, Masaki,-W1C.1 Nakamura, Atsushi, - M4B.2, W1C.1

Nakamura, Masanori, - M1F.2, Tu3I.5, W1H.4, W4E.5, Th3F.2, Th3F.3 Nakamura, Yuichi,- Tu3E.4 Nakanishi, Akira,- M2D.7 Nakanishi, Yasuhiko,- Th1E.7 Nakano, Yoshiaki, - M1E.2, Tu3E.2, W2A.3 Nakashima, Hisao,-W1E.4, W1E.5, Th1E.5 Nakashita, Tomoya,- Th1I.4 Nakayama, Yu,- Th3H.7 Nakazono, Jun,- Th1H.3 Nam, Sae Woo,- Tu3C.6 Namiki, Shu,- M1G.4, M3E.2, M4J.5, Th1F.2 Naoe, Kazuhiko, - M2D.1, M2D.4, M2D 7 Napoli, Antonio, - M3G.3, Tu2D.5, W1E.1, W2A.16, W2A.18, W3H.1, Th1F.7 Naseem, None,-M3F.2, W2A.8 Nasir, Usman,- Tu2C.4 Nasu, Hideyuki,-W4B.1 Natalino da Silva, Carlos,- M1G.2, M3Z.12, W4G.3 Nauriyal, Juniyali,- M3C.1 Navickaite, Gabriele,- W2B.2 Néel, Delphine,- Th3B.5 Neilson, David, - M3G.5, M3Z.11, M4G.5, Tu3E.3, Tu3G.4 Nejabati, Reza, - M3A.2, M3G.7, Tu2H.2, Tu3H.5, W4G.4, W4G.5, W4K.3 Nespola, Antonino, - M2B.4, Th2A.23 Nesset, Derek, - Th1G.2 Netherton, Andrew,- M4I.2 Neugroschl, Daniel,- Tu2C.4 Neves, Manuel,-W3E.1, Th3E.1 Newbury, Nathan, - M3J, 1 Ng, Tien Khee,- W3I.5, W4C.6 Ng, Wing-Chau,- W2A.27 Ng'oma, Anthony,- Tu3J Nguyen, Huy,- M2I.2 Nauven, Kimchau, - Tu2E, 4, Th3B, 1 Nguyen, The Linh,- W2A.2 Nguyen, Trung-Hien,-W3E.4, Th1E.3 Ni, Adrian, - M2D.3 Ni, Weihao,- Th1E.2 Nicholson, Jeffrey,- Th3C.1, Th3C.7 Nie, Mingchao,-W2B.18 Nikaein, Navid,-W4F.4

Nimura, Shinji,- Th2A.35 Ning, Nannan,- Tu3I.6 Nishi, Hidetaka,- M4E.2 Nishimura, Akito,- W2A.10 Nishimura, Kazuki, - M2D.4, M3D.7 Nishimura, Kosuke,- Th2A.35 Nodjiadjim, Virginie,- Tu3I.3 Noguchi, Hidemi,-W3E.6 Noqueira Sampaio, Flavio,- Th1G.3 Nold, Johannes,- W4C.1 Nomoto, Yoshiro, - M1E.2 Norberg, Erik,- W3D.3 Norisugi, Yuji,- Tu2C.2 Notaros, Jelena,- W2A.35 Notaros, Milica,- W2A.35 Novak, Dalma,- W3J.7 Novick, Asher, - M4E.4, M4I.1, W1G.1, Th3A.3, Th3A.4, Th3A.5 Nshizawa, Hideki,-W1H.4 Nummy, Karen,- Th1A.5

0

O'Sullivan, Maurice,-W4C.2 Ocampo, Gustavo,- M3B.4 Occhipinti, Tommaso, - M2I,4 Ochi, Hirotaka,- Th2A.35 Oda, Shoichiro, - M3Z.2, W4H.6 Oda, Takuya,- Tu2C.4 Oguri, Katsuya,- M3J.2 Ohashi, Masaharu, - M4B.2, W1C.1 Ohishi, Norihiro,- W2A.11 Ohno, Akihito,- W1A.6 Ohno, Morifumi,- W3G.2 Ohno, Shuhei, - M2D.7 Ohtsuka, Takafumi,- M1B.4 Okamoto, Satoru,-W1A.3 Okimoto, Takuva,- W1A.3 Okonkwo, Chigo,- W2A.37 Okuda, Shinya, - M2D.2 Oliveira, Romerson, - M3G.7, Tu2H.2, Tu3H.5 Omoda, Emiko,- M4J.2 On, Mehmet Berkay,- Tu3H.4 Onaka, Hiroshi,- M3E.4 Onga, Masaru, - M2D.7 Onodera, Yukito,- Th3H.7 Ooi, Boon,- W1B.2, W3I.5, W4C.6 Ordouei, Helia, - M4E.1 Orsuti, Daniele, - M2F.3, W1C.3, W1J.5 Ortiz, Jordi, - M3Z.13

Ortiz, Laura,- W4K.1 Oshio, Haiime, - M3B.2 Osman, Ahmed, - M3I.3 Osman, Mohamed,- Tu2G.1 Ospina, Ruby,- M2B.6 Ostinelli, Olivier,- Th2A.7 Ostrovskis, Armands,- Tu3I.1 Otowa, Ryohei, - M4G.7, M4J.4 Otsuji, Taiichi,- M3D.7 Otsuka, Shuhei,-W1E.2, W4C.4 Ou, Christine,- M3I.1 Ou, Sung-Yi,- M3F.2 Ou, Z. Y.,- W2B.29 Owen-Newns, Dafydd, - W3G.6 Ozaki, Kohei,- W2A.10 Ozolins, Oskars,- Tu3I.1, Tu3I.3, W2A.33, W2B.12, W4J, W4J.1, Th1H.1, Th2A.32

Ρ

Pacher, Christoph,- W4K.1 Pachnicke, Stephan, - M2G.4, Tu2F, Th1F.4 Pacini, Alessandro, - Th2A.16 Pagano, Annachiara, - Tu3F Pagès, Albert,- Tu3D.2 Palacharla, Paparao, - M3Z.2, W2A.15, W4H.6, Th1B.2 Palermo, Samuel, - M3I.4, Th1A Palmieri, Luca, - M2F.3, W1C.3, W1J.5, W4D.3 Pan, Biwei, - Th3B.5 Pan, Chunpo,- Th2A.25 Pan, Shilong,-W4J.3, W4J.5 Pan, Wei,- W2B.27 Pan, Yan, - Th3J.4 Panahi, Ashkan,-W4G.3 Pang, Xiaodan, - M4E, Tu3I, Tu3I.1, Tu3I.3, W2A.33, W2B.12, W4J.1, Th1H.1, Th2A.32 Pantano, Nicolas,-W3D.5 Paolucci, Francesco, - M1G.2, Th1D.5, Th2A.16 Papp, Scott, - M1E.3, M3D.6, Th1B.6 Pappas, Christos, - M2J.1, M2J.3 Paraiso, Taofig.- W3C.5 Paraschis, Loukas,- W3A Park, Jongchul,- Tu2C.4 Park, Kyung Su,- Tu2B.4 Park, Sangho,- W4B.4 Park, Su lk,- Tu2B.4

Parker, John,-W3D.3 Parker, Kevin,- W2A.2 Parnell, Emily,- Th3J.7 Parolari, Paola, - M2B.3, M4G.3, Th1G Parsons, Nick, - M4J,1 Parsons, Robert,- Th3A.3, Th3A.4 Parsonson, Christopher,-W1G.4 Parvez, Syed Hasan,- W2A.8 Passalis, Nikolaos,-W3G.1 Pastor, Antonio, - W4K.1 Pastorelli, Rosanna,- Th2A.29 Patel, David, - Tu2E.4 Patel, Romil,- Th3H.5 Pathak, Avinash,-W3H.2 Patri, Sai Kireet, - M3Z.7, W3H.6 Patri, Sai, - Th2A.37 Patronas, Giannis, - Th2A.15 Patti, Robert, - M3I.4 Pavani, Henrique,- Tu2G.2 Pavinski, Don,-W3H.1 Pavon, Pablo,- M3Z.13 Peczek, Anna,- M3I.3 Pedreño-Manresa, José-Juan,-M3G.2, M3Z.3, M3Z.4, M3Z.9, W3H.6 Pedro, João, - M1G.1, M3G.3, M4G.6, Tu2D.1, W2A.16, W2A.18, Th2A.17 Pelle, Istvan,- Th1D.5 Pelusi, Mark, - Th1F.2 Pempelfort, Hermann,- W2A.19 Peña, Cristián,- Tu3H.3 Peng, Chuyu,- Tu3E.6, Th1E.6 Peng, Peng-Chun,-W3J Peng, Xiaolei, - Th3C.6 Peng, Yiwei,- W1A.2, W1A.5, W3G.4 Penty, Richard, - M2I.3, W3I.6 Peranić, Matej,-W4K.3 Percelsi, Alessandro, - W3F.1 Perea, Philip,- Th1A.6 Pérez-López, Daniel, - M1J.6 Peserico, Nicola,- M3J.5 Pesic, Jelena, - M3Z.8, W4A.2 Pestana, Noah, - M4I.2 Petit, Cyril,- W3I.1 Petitiean, Antoine,- M2I.4 Petrini, Fabrizio, - Th1D.6 Petropoulos, Periklis,- W4D.5, Th1B.3, Th3F.5 Peyrou, Martin, - M4C.5 Pezzini, Sergio, - M3D.1

Pfeiffer, Thomas, - Tu3F.5, W4F.5 Pfenning, Andreas, - Th2A.36 Pfister, Olivier,- Th3J.7 Pham, Nga,- Th3B.5 Pham, Thang,- W3D.2 Phillips, Ian,- Th1B.7 Pi, Yaodi,- Th3J.4 Picciariello, Francesco,-W4K.1 Piccinini, Giulia,- M3D.1 Piciaccia, Stefano,-W1E.6 Piehler, David,- W4F.2 Piels, Molly,-W3D.3, W4B Piétri, Yoann,- M1I.2, M1I.3 Pilipetskii, Alexei,-Tu2G Pillai, Ed,- W2A.2 Pilori, Dario,-W3E Pimpinella, Rick,-W2A,1 Pincemin, Erwan,- Tu3H.2 Pinto, Armando,- Th3H.5 Pinto, Rossano, - M1G.3, M3Z.10 Pires, João,- M4G.6 Pirmoradi, Ali, - M3I.2 Pittala, Fabio, - Tu3I.1, W2B.12 Pittaluga, Mirko,- M2I.1, W3C.5 Plamenov Yankov, Metodi,-W2B.22, Th2A.26 Plant, David,- W2A.21, Th2A.5, Th3E.7 Plantady, Philippe,- Tu2G.3 Pleros, Nikos, - M2J.1, M2J.3, Tu3B.3, W3G.1, Th3D.4 Pointurier, Yvan,-W4G.6 Poletti, Francesco,-W1C.4, W4D.2, W4D.3, W4D.4, W4D.5 Pommarel, Loann,- W3I.1 Pondillo, Peter,- Tu2C.3 Ponnampalam, Lalitha,- Th1I Poon, Joyce, - M4C.5, Tu3C.5, W3B.1 Popoff, Youri,- W4B.5 Popov, Sergei, - Tu3I.1, W2A.33, W2B.12, Th1H.1, Th2A.32 Popovic, Milos,- Tu3B Portilla, Andres, - M3Z.10 Porto da Silva, Edson,- Th2A.26 Potet, Jeremy,- Tu3F.1, Tu3F.3, Th1G.3, Th3G.1, Th3G.3 Poulton, Chris,- M4I.2 Prabhakar, Anil,-W2B.28 Prather, Dennis,- W4J.4 Prilepsky, Jaroslaw,- W2A.16, Th1F.7

Prieur, Benjamin,- W4H.4

Proietti, Roberto,- Tu3H.4, W1G.2 Pruneri, Valerio,- M1I.3 Pu, Mingbo,- Th3H.4 Puerta, Rafael,- Th1H.1, Th2A.32 Puttnam, Benjamin,- M2B.3, M3Z, M4B.5, M4G.3, Tu3E.3

Q

Qarawlus, Haydar, - M3G.2, M3Z.3 Qi, Haihua,- M4C.7 Qi, Zhenzhou,- W3H.4 Qian, Dayou,- W2B.16 Qian, Li,- W3C.1, Th3J.3 Qian, Yuhao,- W2B.20 Qiao, Yaojun,- W2B.15 Qin, Chuan,- W3H.2 Qin, Xin,-W4G.7 Qin, Yuwen,-W2A.22 Qiu, Jifang,- M3J.4, Th3E.6 Qiu, Kun,- Th3H.4 Qiu, Meng,- W2A.27, Th2A.25 Quinlan, Franklyn, - M1A.3 Quintana Zambrano, Andrea,-Tu2G.2, Tu2G.5 Quiquempois, Yves,- M4B.3

R

Rademacher, Georg, - M2B.3, M4B.5, M4G.3, Tu3E.3, W4D Rafel, Albert, - M2G Rafi, Muhammad, - M3Z.16 Raghuraman, Vivek,- W4B.2 Rahim, Muhammad Ridwanur,-Th2A.18 Rahman, Talha,- W2A.23 Rahn, Jeff,- W3D.2 Rajasekaran, Natarajan,-W3D.5 Rakich, Peter,- Th3A.2 Ralph, Stephen,- M3E.1 Ramachandran, Siddharth, - M1B.1 Ramakrishnan, Murale, - M3F.4 Ramakrishnan, Muralekrishnan,-W2A.32 Ramantanis, Petros,-W1H.3 Ramaswamy, Anand, - W3D.3 Rambo, Tim,- M3Z.5 Ramirez, Joan,- Th3B.5 Ranzini, Stenio,-W1E.1 Rarity, John,- W4K.3 Rashidinejad, Amir,-W1E.1, W3H.1 Rasoulzadehzali, Aref,- Tu2E.2

Raviprakash, Karthik,- W2A.2 Ray, Sagar,-W2A.2 Re, Michele,- W3I.7 Rebellato, Marcos, - Th1E,1 Reilly, Daniel, - M3Z.5, W3C.2 Reis, Jacklyn,- Th1E.4 Rekaya-Ben Othman, Ghaya,- W3E.3 Ren, Zhihao,- M4I.3 Renais, Olivier,- Th2A.18 Renaudier, Jérémie, - W1J.5, W4H.2 Rhouni, A., - M1I.2, M1I.3 Ribeiro Barbio Corrêa, Carina, - M4F.4 Ribezzo, Domenico, - M2I.4 Riccardi, Emilio,- M3Z.13 Ricci, Daniel,-W4D.4 Richardson, David, - W1C.4, W4D.5, Th3C.2. Th3F.5 Riedhauser, Annina,- W4B.5 Riemensberger, Johann,- W4B.5 Riet, Muriel,- Tu3I.3 Riggs, Dave, - Th1A.5 Rimböck, Johanna,- Th3B.5 Rimlinger, Matthieu,-W3I.1 Rishøj, Lars,- M1B.5 Rizzelli, Giuseppe,- Th2A.23 Rizzo, Anthony,- M3I.1, M4E.4, M4I.1, Th3A.3, Th3A.4, Th3A.5 Robertson, Alex, - M2D.3 Robertson, Joshua,- W3G.6 Robinson, James,- M4E.4 Robson, Norman,- Th1A.5 Rode, Andrej,-Th3E.3 Roelkens, Gunther,- Th3A.1, Th3B.5 Roger, Thomas, - W3C.5 Rolland, Antoine,- Th1I.4 Rollinson, John,- W2A.5 Romagnoli, Marco, - M3D.1 Rombouts, Marijn,-W1G.3, Th3D.3 Rong, Haisheng,- Tu2E.3 Ronniger, Gregor, - M2E.3 Rørstadbotnen, Robin André,-W1J.2 Rosa Brusin, Ann Margareth,- Th2A.23 Ross-Adams, Andrew,- Th2A.4 Rossi, Edoardo,- W4K.1 Rossi, Nicola, - Tu2D.2, Tu2D.3 Rossi, Paolo,-W2A.2 Rothenberg, Christian, - M1G.3, M3Z.10 Rottwitt, Karsten, - M1B.5, M3B.2 Roudas, Ioannis,- Th3E.4

Raulin, Julie,- Tu3D.6

Rouvillain, Delphine,- W4H.4 Rowe, Connor, - M1J.5, W4C.3, W4C.7 Roztocki, Piotr,- Th3J.6 Rubino, Gerardo, - W2A.19 Ruffini, Marco, - M3Z, Tu2F.2, Tu3A.1, Tu3F.2 Ruggeri, Stephane,- Tu2G.2 Ruiz, Marc, - M1G.6, M3G.1, M3Z.4, Tu2D.4, W2A.18, W4A.3 Runge, Patrick, - M2D.5, Tu3I.2, W1A.1, W3C.4 Ruocco, Alfonso,- W2A.7 Rusch, Leslie,- Tu2B.2 Rustige, Pascal,-W3C.4 Rydlichowski, Piotr,-W4K.1, Th2A.37 Rvf, Roland, - M2B.4, M3G.5, M3Z.11, M4G.5, Tu3E.3, Tu3G.4, W1C.3, W1J.5

S

Sacher, Wesley, - Tu3C.5 Sackey, Isaac,- M2E.3 Saeki, Tomoya,- Th2A.8 Safari, Poovan, - M2E.3, M3G.2, M3Z.3, W4G.2 Saffman, Mark, - M1A.4 Sahoo, Subhadeep,- M1G.4 Sahu, Jayanta, - Th3C.2, Th3C.5, Th3F.5 Saito, Daisuke,- M4G.4 Saito, Tsubasa, - M3B.5 Saito, Tsunetoshi,-W4B.1 Saito, Yoshihiko,- Th1H.3 Saitoh, Kunimasa, - M1C.4, M3B.4 Sakaino, Go,- M2D.6 Sakakibara, Youichi, - M3C.4, M4J.2 Sakamoto, Taiji,- M3B.1, W1C.2 Sakamoto, Takahide,- W1E.2, W4C.4 Sakr, Hesham,- W4D.5 Sakurai, Yasuki, - M4G.7, M4J.4 Salgado-Cazorla, Christian,- M2G.5 Salgals, Toms,- Tu3I.1, W2B.12 Saliou, Fabienne, - Tu3F.1, Tu3F.3, Th1G.3, Th3G.1, Th3G.3 Samanta, Anirban, - M3I,4 Sambo, Nicola, - M3G.3, Tu3D.4 Samra, Parmijit,-W1E.1, W3H.1 Sanches Martins, Celestino,-W3E.1, W3E.4 Sanchez-Jacome, David,- M1J.6

Sande, Warren,-W3H.1 Sandmann, André,-W3J.3 Sang, Bohan,- Tu2G.6, W2B.10 Sanghi, Deepak, - M2G.2 Santagiustina, Marco, - M2F.3, W1C.3, W4D.3 Sanzaro, Mirko,- W3C.5 Sarmiento-Hernández, Samael, - M11.3 Sasada, Noriko,- M2D.7 Sasai, Takeo,- W1H.4 Sasaki, Tsubasa,- M4G.7, W2A.12 Sasayama, Koji,- Th2A.13 Saseendran, Sandeep,- Th3B.5 Sato, Fumiaki, - Tu2C.2 Sato, Hideaki,- W4K.4 Sato, Hiromu,- Tu3C.2, Tu3C.4 Sato, Ken-ichi, - M4J.5, W1G.5, Th1A.3 Sato, Masaki,- W3E.6 Sato, Norio,- M4E.2 Sato, Shin,- M2I.6 Sato, Takanori, - M3B.4 Satou, Akira, - M3D.7 Savory, Seb,- M2F.1, Th2A.21 Sawamura, Taketsugu,- W4B.1 Saxena, Vishal,- Th1A.2 Scano, Davide, - M1G.2, M3Z.13 Schaedler, Maximilian, - M1F.3 Schaevitz, Rebecca,-W4B.2 Schares, Laurent,- M2A, Th1D.3 Schatz, Richard, - Tu3I.1, Tu3I.3, W2B.12, Th1H.1, Th2A.32 Schell, Martin, - M2D.5, Tu3I.2, W1A, W3C.4 Schemmel, Johannes,- W4E.1 Scheytt, Christoph,- M3Z.18 Schiavon, Matteo, - M1I.2, M2I.5 Schlichtmann, Ulf,- M1F.3, M1F.5 Schmalen, Laurent, - M2F.4, Th3E.3 Schmauss, Bernhard, - W4D.4, Th2A.3 Schneider, Thomas, - M1J.3 Scholz, Philipp, - M4E,1 Schow, Clint, - M1E.5, Th2A.2 Schreiber, Thomas,-W4C.1 Schrenk, Bernhard, - M1I.5, W3I, W3I.3, W4J.6 Schröder, Jochen, - Tu3G.4, Th1B.4 Schubert, Colja,- M2B.3, M2E.3, M4G.3 Schulz, Olaf,- Th1F.4 Scott, David, - M3I.4

Secondini, Marco,- Th3E.2, Th3E.5 Seddighian, Pegah, - Tu2E.4, Th3B.1 Seddon, David,- Th3F.7 Sedor, Thomas,- W2A.1 Seeds, Alwyn,- Th11.1 Segawa, Toru,- M4E.2 Seidler, Paul,- W4B.5 Seker, Enes,- M2E.3 Seki, Takeshi, - M4G.1 Sekine, Norihiko,- Th11.5 Serena, Paolo, - M2E.5, W1H.3 Sevedinnavadeh. Sevedmohammad.-M3C.2, W3I.7 Sgambelluri, Andrea, - M3Z.13, Th2A.16 Shafiiha, Roshanak,- M1E.6 Shakespear-Miles, Hailey,-Tu2D.4 Shan, Linan,-W2B.13 Shao, Tong,- Tu3I.4 Shao, Yingjie,- M4F.2 Shao, Yuchen,- Tu3I,7 Shao, Yun,- Th3J.4 Shariati, Behnam, - M3G.2, M3Z.3, M3Z.4, W4G.2 Sharma, Ankita, - Tu3C.5 Shastri, Bhavin, - M3J.5 Shawon, Md Jubaver,- Th1A.2 Shchukin, Vitaly,- M4C.8 She, Ming Zhu,- W2B.3 Shehata, Mohamed, - Th11.3 Shekhar, Sudip,- Th2A.36 Shen, Bitao,- Th1A.1 Shen, Chao,- W2B.26 Shen, Gangxiang,- W2A.25 Shen, Lei, - M4E.5, Tu3I.7, W4C.5, W4H.3 Shen, Li,-M4I.4 Shen, Sen,-W4G.4, W4G.5 Shen, Wangwei, - W11.3, W11.5, W2B.26 Sheng, Shunfeng,-W1J.3 Shi, Bin, - M4J.3 Shi, Bo,-W1C.4 Shi, Hu,- W2B.16 Shi, Jiangyang,-W2B.26, W4J.5 Shi, Jin-Wei,- M3F.2, W1A.7, W2A.8 Shi, Junting,- W2B.10, W2B.25 Shi, Keqin,- Th1D.2 Shi, Lei,- Tu3A.1 Shi, Wei,-M2D Shi, Wu,- M4F.2

Shi, Yaocheng,- Th3A.7 Shi, Zimina,- W4G.4, W4G.5 Shibahara, Kohki, - M2B.2, M2B.5, M4B.4, Th1F Shibata, Naotaka, - W3F.5 Shieh, William,- M2F.2 Shields, Andrew, - M2I.1, Tu3H.2, W2A.38, W3C.5, W4K.4 Shiqihara, Masahiro,-Tu3E.5 Shih, Tien-Tsorng,- Th3C.4 Shikama, Kota,- M4E.2 Shim, Jong In,- Tu2B.4 Shimada, Masaaki,- M2D.6 Shimazaki, Daisaku,-W2A.17 Shimizu, Shimpei, - M4B.4, M4G.1, Th3F.3 Shimoda, Yuki,- Tu2C.2 Shimomura, Yuusuke,- M4G.7 Shin, Janguk,- W4B.4 Shinada, Satoshi,- M3C.5 Shine, Bob,-W4A.4 Shinohara, Kosuke, - M2D.6 Shinzaki, Ryu,- M3Z.2, W4H.6 Shiozaki, Manabu,- Th2A.8 Shirai, Satoshi,- Th3G.4 Shiraiwa, Masaki, - M1G.4, Th1H.2 Shirao, Mizuki,- M2D.2 Shiratori, Yuta, - M1F.2 Shirpurkar, Chinmay, - M3D.6 Shishikura, Takaaki, - M3B.2 Shiue, Ren-Jye,- M4I.2 Shoji, Daisei,- M4C.4 Shu, Haowen,-Th1A.1 Si, Xiaoshu,- Tu3F.6 Siddharth, Anat,- W4B.5 Sigmund, Ariane,- M2D.5 Silberhorn, Christine,- Th3J.1 Sillard, Pierre, - M2B.3, M2B.4, M4B.3, M4B.5, M4G.3, Tu3E.3 Sillekens, Eric, - M3Z.1, W2A.29, W3E.2, W3E.5, Th1F.3 Silva, Jorge,- Th3E,1 Silva, Moisés,-Th2A.16 Silvestri, Raffaele, - M1A.1 Silvola, Mika,- M3Z.9 Sima, Chaotan, - M4I.4 Simeonidou, Dimitra, - M3G.7, Tu2H.2, Tu3H.5, W1F.3, W4G.4, W4G.5, W4K.3 Simon, Gaël,-Tu3F.1, Tu3F.3, Th1G.3, Th3G.1, Th3G.3

Simon, Moshe,- Tu2F.6 Simsarian, Jesse, - M3G.5, M3Z.11, M4G.5 Sinclair, Laura,- M3J.1 Singh, Karanveer,- M1J.3 Singh, Sandeep Kumar,- Tu3H.4, W1G.2 Skarvang, Kristina Shizuka Yamase,-W1J.2 Slavik, Radan, - M1A, M3J, W1C.4 Slovak, Juraj,- M3Z.15 Slyne, Frank,- Tu2F.2, Tu3F.2 Snigirev, Viacheslav,-W4B.5 Snow, Eric,- Tu2E.4 Sobu, Yohei,- Th1E.5 Sodagar, Majid, - W3D.2 Sogawa, Tetsuomi, - M3J.2 Sohanpal, Ronit,-W3E.2, Th1B.5, Th1F.3 Soltanian, Emadreza,- Th3B.5 Soma, Daiki,- Tu2C.5, Tu3D.5, Tu3E.5 Soma, Go,- M1E.2 Somani, Azmina,-W1E.1, W3H.1 Sone, Kyosuke,- M3Z.2 Song, Hao,- M1J.4, M3F.4, W2A.32, Th3H.1 Song, Junfeng,- W3I.4 Song, Lijia,- Th3A.7 Song, Peiji,- W2A.30 Song, Qingguo,-W3J.4 Song, Qinghai,- W2A.4 Song, Yan,- W2A.24 Song, Yuchen, - M2F.5, Tu2F.4, Th1F.5 Sonkoly, Balazs,- Th1D.5 Sonkoly, John, - W3D.3 Sorace-Agaskar, Cheryl, - M1I, W1B, W1B.5 Soresi, Stefano,-M3D.1 Soraer, Volker,- M3J.5 Sorianello, Vito,- M3D.1 Sorin, Wayne,-W1A.2, W1A.5 Sorrente, Beatrice,-W3I,1 Sotom, Michael,-W3I.1 Soudais, Guillaume, - Th3D.2 Sourikopoulos, Ilias, - M3I.3 Souza, Andre, - M1G.1, M4G.6 Spadaro, Salvatore,- Tu3D.2 Spagnolini, Umberto,-W3I.7 Spalding, Marsha,- Tu2C.6 Spann, John,- W3D.2 Spehr, Marc,-W1B.1

Spentzouris, Panagiotis,- Tu3H.3 Spinnler, Bernhard, - M3Z.15, Th1F.7 Spiropulu, Maria,- Tu3H.3 Spolitis, Sandis,- Tu3I.1, W2B.12, Th1H.1, Th2A.32 Spyropoulou, Maria,- Tu3I.3 Sreenan, Cormac.- Tu3D.6 Srinivas, Hrishikesh,- M2B.6 Srivallapanondh, Sasipim,- Th1F.7 Stabile, Ripalta, - Tu2E.2, Tu3I.3 Stahl, David, - M2E.3 Stalmashonak, Andrei, - Tu3C.5 Stampoulidis, Leontios, - M3I.3 Stanton, Eric,- Tu3C.6 Sterlingov, Petr,- Th3F.7 Stern, Brian, - M1C.5 Stievater, Todd,-W3B.4 Stipčević, Mario,-W4K.3 Stohr, Andreas, - Tu3J.3 Stojanovic, Nebojsa,- W2A.23 Strasser, Florian,-W4E.1 Strasser, Werner,- W4K.1 Straub, Michael,-W4F.5 Straullu, Stefano, - Tu3D.4, W1E.6, Th2A.29 Stuhl, Benjamin, - M3J.1 Su, Guan-Lin,- Tu2E.3 Su, Hao, - M3Z.15 Su, Pan,- Th2A.22 Su, Tiehui,- Tu2E.4 Su, Wei-Chih,- M3F.2 Su, Xiaofei,- W1E.4, W1E.5 Su, Xiaoyue,- Th1D.1 Su, Xinzhou,- M1J.4, M3F.4, Th3H.1 Su, Yikai, - M2F.2 Subramaniam, Suresh, - M4G.8 Suckow, Stephan, - M2E.3 Suda, Satoshi,- M3E.2 Sudarshanam, V.- Th3C.7 Suemitsu, Tetsuya, - M3D.7 Suga, Hayato,- Th3G.4 Suganuma, Takahiro,- M1B.4 Sugimoto, Yoshiyuki,-W1A.3 Sugimura, Masahiko,- W2A.15 Sugizaki, Ryuichi, - M4G.7, W2A.12, Th1B.1, Th1B.2, Th2A.10 Sumant, Alkesh,-W1B.5 Sun, Caiming,- M3C.8, M4F.2, Th3A.6 Sun, Changzheng,-W1A.4 Sun, Han,- Tu2G.1, W1E.1, W3H.1 Sun, Jiang,- W1F.4, W3D.4

Sun, Ling,- M4C.7 Sun, Lu,- W4G.1 Sun, Peng,-W2B.13 Sun, Qizhen, - M1C.6, Tu3G.3, W1J.3, W1J.6, W2B.23, W3J.4 Sun, Shujuan, - Tu2G.7, W2B.18 Sun, Shuman,- Th3J.7 Sun, Yan-Ting,- Th1H.1, Th2A.32 Sun, Yi,- M1B Sun, Yingzhi,- Th3C.1, Th3C.7 Sun, Zhuochao,- W2A.2 Sutcliffe, Evan,- W4K.2 Suzuki, Keijiro, - M3C.4, M4J.2, M4J.5, Th1A.3 Suzuki, Kenya,- M3E.4, Th1E.7 Suzuki, Masatoshi,- Th2A.35 Suzuki, Ryoko,- M2D.6 Suzuki, Takahiro, - Tu3F.4, Th1G.4 Suzuki, Takanori,- M2D.4 Suzuki, Yohei,- Tu2C.2 Suzuki, Yosuke,- M2D.6 Svaluto Moreolo, Michela, - M4G.2 Swann, William,- M3J.1 Swenson, Norman, - M1E Swint, Reuel,-W1B.5 Syed, Sharfuddin,- M3Z.15 Syrivelis, Dimitris,-W3G.1, Th2A.15 Sysak, Matthew, - M4C Szczerba, Krzysztof,-W3D.3 т

Sun, Lin,- W2A.25

Tabatabaei, Alireza,- W1B.1 Taengnoi, Natsupa,- W4D.5, Th1B.3, Th3E5 Tahara, Rika,- M4G.7 Taiima, Kazuvuki, - M3Z.2 Takachio, Noboru,- M3E.4 Takagi, Takeshi, - M3B.2 Takahashi, Hidenori,- Tu2D, Tu3E.2 Takahashi, Hiroshi,-W3J.1, W3J.6 Takahashi, Masanori, - W2A.12, Th1B.1, Th2A.10 Takahashi, Minami,- Th3F.2 Takamoto, Masao,- M3J.2 Takano, Junva,- Tu2C.2 Takasaka, Shigehiro,- W2A.11, Th1B.1, Th1B.2 Takase, Masayuki,- Th2A.30 Takechi, Masaru, - W1A.3, Th2A.8 Takeda, Daiki,- Tu2C.4, W4B.1

Takeda, Koji,- Tu2B.5 Takemura, Ryota,-W1A.6 Takenaga, Katsuhiro, - M3B.5, Tu2C.4 Takenaka, Mitsuru, - Tu3C Takeshita, Hitoshi, - M4G.7, Tu3E.4 Takiguchi, Koichi, - M1C.2 Talli, Giuseppe,- Th1G.2 Tan, Amber,- W2A.2 Tan, James You Sian,- Th3B.3 Tan, Man,- Tu2G.7, W2B.18 Tan, Mingming,- Th1B.7 Tanabe, Akio,- Th2A.10 Tanaka, Hajime,- Th2A.8 Tanaka, Kazuki,- Th2A.35 Tanaka, Keiji,- W1A.3, Th2A.8 Tanaka, Shinichi, - M2D.7 Tanaka, Shinsuke,- Th1E.5 Tanaka, Takafumi,- Tu2D.6 Tanaka, Yu,- Th3F.3, Th3F.6 Tanemura, Takuo, - M1E.2, Tu3E.2, W2A.3 Tang, Du,- W2B.15 Tang, Ming, - M1E.4, M2C.2, M2C.3, M3E.3, W1E.3, W2B.7, W2B.20, W3J.5, Th2A.28 Tang, Rui,-W2A.3 Tang, Weijie, - M4J.6 Tang, Xuefeng,-W2A.27, Th2A.25 Tang, Yu,- Tu2F.4 Tang, Zhenzhou,- W4J.5 Tang, Zhigang,-W4J.3 Tang, Ziyi,- W4C.5 Tangdiongga, Eduward, - M4F.4, Th3H Tanigawa, Tatsuya, - Th11.4 Taniguchi, Hiroki, - M1F.2, Tu3I.5, Th1E.7 Taniquchi, Takashi,- M3D.1 Tanimura, Takahito, - Th2A.30 Tanizawa, Ken, - M2I.6, W4C.4 Tanomura, Ryota,- W2A.3 Tanzi, Alberto,- W1E.6 Tao, Min,- W3I.4 Tao, Ran, - M3J.4 Tao, Yuansheng,- Th1A.1 Tao, Zhenning,-W1E.4, W1E.5 Taranta, Austin, - W4D.2, W4D.3, W4D.4 Tatamida, Yasuto,- W2A.11 Tazawa, Hidehisa,- M1B.4, Th3C Tebart, Jonas,- Tu3J.3

Takeda, Kentaro,- Tu2C.2

Tessinari, Rodrigo,- W2A.38 Theurer, Michael, - M2D.5 Thiessen, Torrey,-M4C.5 Thieu, Trung,-M3Z.8 Thomas, Jordan,- Tu3H.3 Thomas, Rijil,- M2E.3 Thomson, Sandy,- Tu2G.1 Thouenon, Gilles,- Th2A.18 Thual, Monique,- Th3G.1 Thudsalingkarnsakul, Nitidet,-W2A.11 Tian, Liang,- Tu3J.1, W2A.20, W3F.2, W3F.3 Tian, Yuxin,- W1A.4 Tiburcio de Araujo, Juliana,- M2E.1, Tu2G.5 Tien Dat, Pham,- Tu2J.1, W2A.34, Th11.5 Tikas, Marko,-W3H.6 Titkov, Ilya E.,- M4E.1 Tobing, Landobasa, - M4I.3 Toccafondo, Iacopo,-W4D.4 Tong, Weidong, - Tu3J.7, W2A.20, W3F.3 Torbatian, Mehdi,-Tu2G.1, W3H.1 Tornatore, Massimo, - M1G.4, Tu2D.7 Torres-Ferrera, Pablo,- Th2A.21 Tosi, Alberto, - M2I.4 Tossoun, Bassem, - W3G.3, W3G.4 Totovic, Angelina,-W3G.1, Th3D.4 Toyoshima, Morio,- Th1H, Th1H.3 Tran, Huy,- M3Z.8 Tremblay, Christine,- W4A, W4G Trichili, Abderrahmen,-W4C.6 Trigo Vidarte, Luis,- M1I.2, M1I.3 Troia, Sebastian, M3Z.14, Tu2F.2 Troncoso Costas, Marcos,- Th2A.27 Troppenz, Ute, - M2D.5, Tu3I.2 Tropschug, Carsten, - M2G.4 Tsai, Chia-Ling,- Th3C.4 Tsai, Deng-Cheng,- Th3H.6 Tsai, Shang-Yen,- Th3H.6 Tsai, Shen-Chen,- Tu2J.4 Tsakyridis, Apostolos, - M2J.3, Tu3B.3, W3G.1, Th3D.4

Tedaldi, Valentino,- W3I.1

Terwilliger, Chad.- Th1A.4

Terzenidis, Nikos,- Th2A.15

Teng, Min,- Th2A.22

Tefas, Anastasios, - W3G.1, Th3D.4

Teissier, Roland, - Th1H.1, Th2A.32

Tsang, Hon Ki,- Th3B.4 Tse, Lawrence,- W2A.2 Tseng, Chin-Hao,- M3D.5 Tsubouchi, Daiki,-W1A.6 Tsuchizawa, Tai, - Tu2B.5 Tsuritani, Takaehiro,- Tu3D.5 Tsuritani, Takehiro, - M1G.4, M2B.1, M3G.6, Tu2C.5, Tu3E.2, Tu3E.5 Tünnermann, Andreas,-W4C.1 Tur, Moshe, - M1J.4, M3F.4, W2A.32, Th3H.1 Turitsyn, Sergei,-W2A.16, Th1F.7, Th2A.11 Turkiewicz, Jaroslaw,- M4C.8 Tzanakaki, Anna,- W4F.4 Tzu, Ta Ching,- W2B.2

Uchida, Atsushi,- M2J.5 Uchida, Yudai, - M4G.7 Uchiyama, Asami, - M2D.2 Udalcovs, Alekseis,- Tu3I,1 Uemura, Futa,- Tu3C.2 Uemura, Hiroshi,- Th2A.8 Uesaka, Katsumi, - Th2A.8 Umeki, Takeshi, - M4G.1, Th3F.3 Umeta, Kohei,-W4B.1 Umezawa, Toshimasa, - M1E.2, W3I.2 Urashima, Itsuki,- M4G.7 Urata, Ryohei,-W3D.1 Ureña Gisbert, Mario,- M1J.1 Urushidani, Shiqeo,-Th2A.13 Usenko, Vladyslav,- M4A.2 Ushiiima, Ichiro, - M3J.2 Utaka, Katsuyuki,- Th2A.6

U

v

Vagionas, Chris,- M2J.1 Vagniluca, Ilaria,- M2I.4 Vaissière, Nicolas,- Th3B.5 Valaee, Shahrokh,- W2A.15 Valcarenghi, Luca,- Th2A.16 Valivarthi, Raju,- Tu3H.3 Vallone, Giuseppe,- W4K.1 Val-Marti, Aina,- W3I.3 Van Campenhout, Joris,- W3D.5 Van Den Borne, Dirk,- W3H van der Heide, Sjoerd,- W2A.37 van Howe, James,- Th3J.6 Van Vaerenbergh, Thomas,- W3G.4 van Veen, Dora,- W1I, W1I.1, Th1G.1

Varughese, Siddharth, - Tu2G.1 Vasilyev, Michael, - W2A.31, W3C, Th1B, Th1B.2 Vassilieva, Olga, - M3Z.2, W4H.6 Vasvlchenkova, Anastasija, - M3Z.1, W2A.29 Vedovato, Francesco,- W4K.1 Védrenne, Nicolas,-W3I.1 Velasco, Luis, - M1G.6, M3G.1, M3Z.4, Tu2D.4, W2A.18, W4A.3 Velenis, Dimitrios,-W3D.5 Venables, Ranju,- Tu2E.4 Venkatasubramani, Lakshmi Naravanan.- M4C.6 Venkitesh, Deepa,- W2B.28 Ver Steeg, Benjamin,- Th1A.6 Verbishchuk, Yuliva,- Tu3D.6 Verchere, Dominique,- M3Z.8 Verheyen, Peter,-W3D.5 Verma, Ashish,-M3E.5 Vernon, Zachary,- Tu2H.3 Veronese, Riccardo,-W1C.3 Vidal, Borja,- M2G.5 Vijayan, Kovendhan,- Th1B.4 Vilalta, Ricard, - M3Z.12, M3Z.9, Tu3D.3, Tu3D.5, Tu3D.7 Vílchez, F. Javier,- M4G.2 Vilela, Tomaz,- Th1E.4 Villatoro, Joel,-W1C.5 Villoresi, Paolo,-W4K.1 Virgillito, Emanuele,- Tu3D.4, Th2A.29 Virzì, Salvatore,- M2I.1 Voigt, Karsten, - M3I.3 Vokic, Nemanja,- M1I.5 Von Der Weid, Jean-Pierre,- W2A.9 von Hünefeld, Guillermo,- M2E.3 Vrontos, Constantinos,- Tu3H.5

W

Wakayama, Yuta,- M2B, M2B.1 Wakisaka, Yoshifumi,- W3J.1, W3J.6 Wakita, Hitoshi,- M1F.2 Walk, Nathan,- W3C.5 Wall, Brian,- W2A.2 Wallberg, Dennis,- Tu3G.4 Walther, Philip,- M1A.1, M1I.5, W3I.3 Wang, Anqi,- M1C.6 Wang, Bin,- M3D.2, W2B.24 Wang, Cen,- M3G.6, Th3D.5 Wang, Changyue,- W2B.29 Wang, Chen,- W2B.10, Th1I.2, Th3H.3

Wang, Chih-Chun, - M4F.3, M4F.5, Th₃H 6 Wang, Danshi, - M2F.5, M3G.4, Tu2F.4, W2B.8, Th1F.5 Wang, Dong,- W1F.4, W2B.16, W3D.4 Wang, Dongxiang,- Tu3E.6 Wang, Feng,- Tu3J.4, W2B.10, W2B.25, Th1I.2, Th2A.22 Wang, Haipeng,- W4J.5 Wang, Heng,- Th3J.4 Wang, Hengyu,- W2B.1 Wang, Hua,- W1F.2 Wang, Huihui,- W3E.7 Wang, Jeffrey,- W2A.2 Wang, Jiabin,- W2B.16 Wang, Jian, - Tu3I.7, W1A.4, W4C.5 Wang, Jianwei,- Tu2H.1 Wang, Jiaye,- W11.3, W11.5 Wang, Jingchuan,- W1J.4 Wang, Juan,- M1G.5 Wang, Kaihui, - Tu3J.5, W2B.10, W2B.25, Th1I.2, Th3H.3 Wang, Ke,- Th11.3 Wang, Lai,- W1A.4 Wang, Lei,- Th3B.2 Wang, Liang, - M2C.2, W2B.20, W3J.5 Wang, Lin,- W2B.19 Wang, Lingling, - Tu2F.5 Wang, Lixian,- Th3C.3, Th3C.6 Wang, Luke,- W2A.2 Wang, Mingxu,- Tu3J.5 Wang, Muguang,- W2B.12, Th1H.1, Th2A.32 Wang, Ning,- W2A.13, Th2A.20 Wang, Peng,-W2B.4 Wang, Ping-Chuan,- Th1A.5 Wang, Po-Shun, - M3F.2, W1A.7 Wang, Qian,- Tu2D.4 Wang, Qingsong,- W3F.2 Wang, Rui, - M2A.1, M3G.7, Tu2H.2, Tu3H, Tu3H.5, W4B.5, W4G.4, W4G.5, W4K.3 Wang, Ruichun, - M4E.5, Tu3I.7, W4C.5 Wang, Shih-Cheng,- Th1E.1 Wang, Shuo,- W1H.5 Wang, Songli, - M3I.1, Th3A.4 Wang, Ting,- Tu3G Wang, Wei,-W1F.2 Wang, Wenyuan,- Th3J.3 Wang, WenZhong,- Tu2G.7

Wang, Xi,- W2A.15, W2A.4 Wang, Xiang,- Tu3F.6 Wang, Xingjun,- Th1A.1 Wang, Xutao, - M3C.7, W3E.7 Wang, Yang, - M3C.7 Wang, Yagin,-W1E.3, W2B.14 Wang, Ye,- Tu2E.4, Th3B.1 Wang, Yingning,- M3F.4 Wang, Yingying,-W4D.1, W4D.6, W4H.7 Wang, You,- W4H.5 Wang, Yu,- M4J.3, Th3C.2, Th3F.5 Wang, Yuehai,- M3F.1 Wang, Yunwu,- Tu3D.1, Tu3J.7 Wang, Yuxi,-W2B.1 Wang, Yuyang,- Th3A.4 Wang, Zehao, - W3H.4, Th2A.1 Wang, Zhao,- W2B.3 Wang, Zhongyang, - W4C.5 Watanabe, Kei,- M4G.1 Watanabe, Kenji,- M3D.1 Watanabe, Kouhei,- W2A.17 Watanabe, Mitsuki, - M3D.7 Waterhouse, Rod,-W3J.7 Watts, Michael,- M4I.2 Webber, Julian,- Th11.3 Weerasinghe, Amanda,- M2I.3 Wei, Chia-Chien, - M3F.2 Wei, Tzu-Chieh,- M4F.3 Wei, Xuhao,-W1C.4 Wei, Yi,- Th3H.3 Wei, Yingxin,-W3F.3 Wei, Zixian,- W2A.21, Th2A.5 Welch, Dave,-W1E.1, W3H.1 Weng, Zu-Kai,- W2A.34 Wenning, Mario,-Th2A.37 West, Gavin,-W1B.5 Westbrook, Paul,- Th3C.1 Westergren, Urban, - Tu3I,1 Wey, Jun Shan,- Tu3A.1 White, Catherine,-W4K.4 Widmer, Johannes,- Th2A.34 Wilkinson, Mark,-W4K.4 Williams, K.A., - Tu3I.3 Williams, Mark,-W3D.3 Willner, Alan, - M1J.4, M3F.4, W2A.32, Th3H.1 Windeler, Robert,- Th3C.1 Winiger, Joel,-Tu3C.3 Winzer, Georg,- M3I.3

Withayachumnankul, Withawat,-Th11.3 Withford, Michael,- Th2A.4 Witzens, Jeremy,-W1B.1, W2A.6, Th1F.4 Wladek, Forysiak,- Th2A.11 Wohlfeil, Benjamin,- Th2A.3 Wolde, Desalegn Feyisa,- Tu3I.3 Wonfor, Adrian, - M2I.3 Wong, Elaine,- W3A Woodward, Robert,- Tu3H.2, W2A.38, W3C.5, W4K.4 Wosinska, Lena,- M3Z.6 Wright, Paul,-W3H.3, W4K.4, Th2A.14 Wu, Chengcheng,- W4H.5 Wu, Dingvi,- Th3B.2 Wu, Hao,- Th2A.22 Wu, Jian, - M3J.4, Th3E.6 Wu, JianJun,- Tu2G.7 Wu, Ming,- Tu3B.2, Tu3B.4 Wu, Tzu-Fan,- W2A.2 Wu, Xinru,- Tu2E.3 Wu, Xiong,-W1J.4, Th3B.4 Wu, Xuefeng,- W4H.5 Wu, Xuming,- Tu3F.6, W2A.13 Wu, Yating,- M4J.6 Wu, Yixin,- W2A.33 Wu, You,-W2A.4 Wu, Yuejian,- Tu2G.1 Wu, Yuepeng,- M3J.4 Wu, Zhen,-W2B.15 Wu, Zhenguo,-W1G.1 Wu, Zhuojie,- Th1A.5

Х

Xi, Lixia,- W2B.13
Xia, Penghui,- Tu3I.6
Xiang, Meng,- W2A.22
Xiang, Shitong,- Tu3J.1, W4J.2
Xiao, Xi,- M2J.4, W1E.3, W2B.14, Th1E.6, Th3B.2
Xiao, Xian,- W3G.4
Xiao, Xiangpeng,- Tu3G.3, W1J.6, W3J.4
Xiao, Xiaosheng,- W2B.13
Xiao, Xinhua,- M1B.3, W3E.7
Xie, Chongjin,- Tu2F.5, Tu3A.1, W2A.14, W2B.4, W3A.3
Xie, Jiuyu,- W4G.7
Xie, Qijie,- W3I.4 Xie, Si,- Tu3H.3 Xie, Tangyao, - Tu3J.4, Tu3J.5, W2B.25, Th1I.2 Xie, Weigiang,- Th1A.1 Xie, Xiaopeng,- Tu2J.2 Xie, Xuexia,- Th1D.4 Xin, Xiangjun,- Tu2G.6, W2B.10 Xin, Zhigang,- Tu3J.7 Xing, Cheng,-M3G.4 Xing, Rui,-W2B.5 Xing, Sizhe,- W1I.3, W1I.5 Xiong, Bing,-W1A.4 Xiong, Wei,-W1J.3 Xiong, Zhang,-W2B.23 Xu, Bingjie,- Th3J.4 Xu, Dongchen, - M1C.6 Xu, Fanglu,- M4I.4 Xu, Feihu,- M1I.1 Xu, Hai,- Th1E.1 Xu, Haixuan,- M4C.6 Xu, Jing,- M4F.2 Xu, Ke,- W2A.4 Xu, Lu,- M2J.4 Xu, Luhua,- Th2A.5 Xu, Mingfeng,- Th3H.4 Xu, Ou,-W2A.22 Xu, Ruiyang,- M3F.7 Xu, Sugang,- M1G.4 Xu, Tao,- M1B.3 Xu, Wangyang,-W1J.3 Xu, Xiaonan, - M3G.5, M3Z.11 Xu, Xiaoyu,- W2B.22 Xu, Yang,- W2B.1 Xu, Yicheng,- Tu2J.2, Tu2J.5 Xu, Zengguan,-W4H.3 Xue, Xuwei,-W2B.9, Th1D.1 Xuereb, André, - M2I.4

Y

Yabuki, Ryota,- Th2A.6 Yaegashi, Yoichi,- Tu3E.5 Yagi, Hideki,- W1A.3 Yamada, Koji,- W3G.2 Yamada, Yusuke,- M3B.1, M3B.6, M4B.1 Yamaguchi, Yoriyoshi,- M2D.4 Yamaguchi, Yuya,- Tu2J.1 Yamamoto, Hiroshi,- W2A.17 Yamamoto, Naokatsu,- Tu2J.1, W3I.2, Th1H.2 Yamamoto, Noritsugu,- W3G.2 Yamamoto, Shuto,- M1F.2, Tu3I.5 Yaman, Fatih,- W1J.7 Yamatoya, Takeshi, - M2D.2 Yamauchi, Syunya,- M2D.4 Yamauchi, Yasuhiro,- W1A.6 Yamazaki, Etushi,- W1H.4 Yamazaki, Kouichiro,- W1A.3 Yan, An,- W1I.3, W1I.5 Yan, Baoluo, - W2B.16, W4D.6 Yan, Changkun, - M4E.5, Tu3I.7, W4C.5 Yan, Fulong,- W2A.14 Yan, Jhih-Heng,- Tu2J.4 Yan, Lianshan, - W2B.27 Yan, Peng,-M3I.4 Yan, Shi,- Tu2F.4 Yan, Shuangvi,-W4G.4, W4G.5 Yan, Yaxi,- Tu2F.5, W1J.4 Yan, Zhijun,- Tu3G.3, W1J.6, W2B.23, W3J.4 Yan, Zhiwei,- M4I.4 Yanagihara, Ai,- Th1E.7 Yanagimachi, Shigeyuki, - M4G.4 Yang, Changsheng,-W2B.9 Yang, Chao, - Th1E.6, Th3E.6 Yang, Chengwu,- W1E.5 Yang, Fan,- Tu3J.6 Yang, Guijiang,- W2B.20, W3J.5 Yang, Hang,- W4J.1 Yang, Hao,- Th1D.4 Yang, Jianyi, - M3F.1, Tu3I.6 Yang, Jiagian,- W3E.2 Yang, Liubo,- M4E.5, Tu3I.7, W4C.5 Yang, Liuyang,- M1C.6 Yang, Min,- Tu3I.7, W4C.5 Yang, Qi,-W1E.3, W2B.11, W2B.14, W4E.2 Yang, Ruizhi,-W4G.4, W4G.5 Yang, Sean,-W2A.8 Yang, Xin,- W4G.6 Yang, Xiongwei,- Tu3J.4, W2B.25 Yang, Yanfu,- W2B.17, Th3H.2 Yang, Yizhou,- Tu2D.7 Yang, Zeyuan, - Tu2F.3 Yang, Zhigun, - M1B.3, M3C.7, W2B.5, W3E.7 Yang, Zijiao,- Th3J.7 Yang, Zuomin,- W2A.33, W4J.1 Yao, Chaonan,- Tu3I.7 Yao, Guanghao,- W2B.13 Yao, Shuchang,-W1E.3, W2B.14

Yao, Yong,- W2B.17 Yao, Zhanshi,- W2B.1 Ye, Bing,- M3G.4, Tu2G.6, W2B.8, W4D.6 Ye, Ting,- Th3J.4 Ye, Tong,- W1E.5 Ye, Xiaoyan, - M2E.4, W4H.2 Yeager, Luke,- Th2A.15 Yeh, Chien-Hung,- M4F.3, M4F.5, Th3H.6 Yekani, Amin,-W3H.1 Yevnin, Maya,- M2J.6 Yi, Il-Min,- M3I.4 Yi, Lilin,- Tu2J.5, Th1F.6 Yi, Qiyuan,- M4I.4 Yi, Wenting, - M3F.3 Yi, Xingwen,- Th1E.2 Yi, Xu,- Th3J.7 Yin, Xin,- M2J.3 Yin, Yawei,- W3H.2 Yokoyama, Shiyoshi,- Tu3C.2, Tu3C.4 Yoneda, Yoshihiro,-W1A.3 Yonenaga, Kazushige, - M3E.4 Yong, Zheng,- M4C.5, Tu3C.5 Yoo, S. J. Ben, - M1J.6, M3I.4, M4G.5, Tu3H.4, W1G.2 Yoshida, Junji,- W2A.11 Yoshida, Masato, - M3D.7 Yoshida, Setsuo,- M3Z.2 Yoshida, Tomoaki, - Tu3F.4, W3F.5, Th1G.4 Yoshida, Tomoya,- M3C.4, M4J.2 Yoshida, Yuki,- M1E.2, W3F.6, W4E.3, Th1H.2 Yoshikane, Noboru, - M1G.4, M2B.1, M3G.6, Tu2C.5, Tu3D.5, Tu3E.5 Yoshima, Satoshi, - Th3G.4 Yoshino, Manabu,- W3F.5 Yoshioka, Toki,- Th11.4 You, Jong-Bum,- W2A.36 You, Xiaohu,- Tu3J.1 Youn, Chun Ju.- M1I.4, W2A.36 Young, Jeff,- Th2A.36 Youxi, Lin,- W2A.23 Yu, Chaode,- W1F.4 Yu, Guomin,- M1E.6 Yu, Haijiang,- Tu2E.4 Yu, Haocun, - M1A.1 Yu, Huang,- Th1E.6 Yu, Hui,- M3F.1, Tu3I.6, W2B.21

Yu, Jianguo, - Tu3J.4, Tu3J.5, W2B.25, Th11.2 Yu, Jianjun,- Tu2G.6, Tu3J.1, Tu3J.4, Tu3J.5, Tu3J.7, W2A.20, W2B.10, W2B.25, W4J.2, Th1I.2, Th3H.3 Yu, Jiekui,- Tu2G.7, W2B.18 Yu, Jinyi,- M4E.5 Yu, Qianhuan,- W2B.2 Yu, Rangchen,- Th2A.20 Yu, Shaohua, - M2J.4, W4H.5, Th3B.2 Yu, Shuqi,-W1E.7 Yu, Siyuan,- M2J.2, W4H.3 Yu, Su-Peng,- Th1B.6 Yu, Xianbin, - Tu3I.1, W2A.33, W2B.12, W4J.1, Th1H.1, Th2A.32 Yu, Xiaoshan,- Th3D.1 Yu, Xinkuo,- W2A.22 Yu, Xiongbin,- W2A.33 Yu, Yonglin,- M4C.6 Yu, Yuan,- W2B.19 Yuan, Yuan, - W1A.2, W1A.5 Yuan, Zhiliang, - M2I.1, W3C.5, Th3J.5 Yue, Jiang,- M1C.7, Tu3J.6

Z

Yun, Han,-W3D.3

Yun, Seokiun,-W4B.4

Zafrany, Arik,-W2A.2 Zahavi, Eitan,- Th2A.15 Zahidy, Mujtaba, - M2I.4 Zakharian, Aramais,- Tu2C Zalevsky, Zeev,- M2J.6 Zami, Thierry,- Tu2D.2, Tu2D.3 Zanetto, Francesco, - M3C.2, W3I.7 Zang, Jizhao, - M3D.6, Th1B.6 Zavatta, Alessandro, - M2I.4 Zeghlache, Diamal,- M3Z.8 Zeng, Keyan, - M2C.2, W2B.20, W3J.5 Zeng, Ruoyu,- M3F.4 Zeng, Xiaobo,- Tu2J.5 Zeng, Yan,- Tu3F.6 Zervas, Georgios,-W1G.4 Zervas, Michael,- W2B.2 Zhai, Zhiqun,- Tu2F.5 Zhai, Ziwei,- Th3C.5 Zhang, Aidong, - M3C.8 Zhang, Anxu,- Tu3E.6 Zhang, Bowen,- M3J.4 Zhang, Boxuan,- Th2A.9 Zhang, Chenbo,- Tu2J.2 Zhang, Chuanbiao,- Tu2F.4

Zhang, Haipeng,-W1I.2, W1I.4 Zhang, Hongbin,- M1E.1 Zhang, Hongguang,- Th3B.2 Zhang, Honggi,- W2A.33, W4J.1 Zhang, Hua,- Tu3I.7 Zhang, Jiao,- Tu3D.1, Tu3J.1, Tu3J.4, Tu3J.5, Tu3J.7, W2A.20, W3F.2, W3F.3, W4J.2, Th1I.2 Zhang, Jie,-W1F.2 Zhang, Jing,- Tu2C.4, Th3B.5 Zhang, Jinsong,-W2A.21, Th2A.5 Zhang, Junhao, - W3F.2, W3F.3 Zhang, Junping,- W3I.5 Zhang, Junwei,- W4H.3 Zhang, Junwen,- Tu3I.6, W1I.3, W1I.5, W1I.6, W2B.26, W4J.5 Zhang, Ke,-W1E.4, W1E.5 Zhang, Lei,- M4E.5, Tu3I.7, W4C.5 Zhang, Lin,- M1B.3, M3C.7, W2B.5, W3E.7 Zhang, Long,- W2B.10 Zhang, Lu,- Tu3I.1, W2A.33, W2B.12, W4J.1, Th1H.1, Th2A.32 Zhang, Maogi,- Th2A.28 Zhang, Min,- M2F.5, M3G.4, Tu2F.4, W2B.8, Th1F.5 Zhang, Ming-Ming, - M3E.3, Th2A.28 Zhang, Nannan,- W2A.13 Zhang, Qiang, - M3F.1, Tu3I.6, W2B.21 Zhang, Qiaolun,- Tu2D.7 Zhang, Runzhou, - M1J.4, Th3H.1 Zhang, Shaoliang,-W2B.16 Zhang, Shenmao,-W2B.11, W4E.2 Zhang, Shiyong, - M4C.7 Zhang, Shiyu,-W2B.18 Zhang, Shuyue,-W2B.21 Zhang, Tian,- M3J.4 Zhang, Tianliang,- M3Z.14, Th2A.18 Zhang, Wei Li,- W2B.3 Zhang, Wei,-W3D.4 Zhang, Weifeng, - M3D.2, M3J.6, W2B.24 Zhang, Wenjia, - M1C.7, Tu3J.6 Zhang, Wupin,-W3D.4

Zhang, Chunyu,-M3G.4, W2B.8,

Zhang, Dechao,- W1F.4, W2A.13,

W4H.7, Th2A.20

Zhang, Dezhi,-Tu3A.2

W2A.24, W2B.16, W3D.4, W4D.6,

Th1E5

Zhang, Xianmin,- W4J.1 Zhang, Xiaoguang,- W2B.13 Zhang, XiMeng, - M2F.5 Zhang, Xinliang,- W2B.19 Zhang, Xinwei,- Th1D.1 Zhang, Xu,- M2J.4, W4H.5 Zhang, Yao,- Tu2F.4, Th1F.5 Zhang, Yiqun,- Th3H.4 Zhang, Yu,- M3I.4 Zhang, Yuanjian,-W1F.2 Zhang, Zhaoyang,- M3F.1 Zhang, Zhe,-W4D.1 Zhang, Zhengxing,- W2A.35 Zhang, Zhuhong, - W2A.26, Th2A.25 Zhang, Ziheng,-W1E.3, W2B.14 Zhao, Bokun,- W3G.5 Zhao, Can,- M2C.3, Th2A.28 Zhao, Feng,- Tu3J.4, Tu3J.5, W2B.25, Th11.2 Zhao, Guo,- W2A.20 Zhao, Hongwei,-W3D.3 Zhao, Jiapeng,- W2B.9 Zhao, Li,- Tu2G.6, W2B.10, W2B.25, Th1I.2, Th3H.3 Zhao, Tianyu,- W2A.27, Th2A.25 Zhao, WanXin,- W2B.13 Zhao, Wei,- Th3J.6 Zhao, Weiliang,- W1J.6, W3J.4 Zhao, Xiangjie,- M4C.7 Zhao, Xianmin,- Th3H.3 Zhao, Xiaohui,- Th3F.4, W1E.7 Zhao, Yang,- W1F.4 Zhao, Yisong,-W2B.9, Th1D.1 Zhao, Yongli,- W1F.2 Zhao, Yu,- W3E.4, Th1E.3 Zhao, Zhenyu,- M3J.6 Zhao, Zhiyong, - M2C.3, W2B.7 Zheng, Anny Xijia,- W3A.2 Zheng, Bofang,- W2B.15 Zheng, Haomian,- W1F.4 Zheng, Jiajiu,- M4I.2 Zheng, Lanfang,- Th1D.2 Zheng, Shaonan,- W2B.1 Zheng, Shuang, - M3J.6 Zheng, Xuezhe,- M4C.3, W2A.24, Th2A.22 Zhong, Linsheng,-W2B.11 Zhong, Ningyuan,- W2B.27 Zhong, Qize,-M4I.3, W2B.1 Zhou, Gefan,- Tu2F.1

Zhou, Hong,- M4I.3 Zhou, Huibin, - M1J.4, M3F.4, W2A.32, Th3H.1 Zhou, Jiajun,- Th2A.28 Zhou, Lai,- Th3J.5 Zhou, Linjie,- M3F.7 Zhou, Mengjie,- Th3H.4 Zhou, Pei,-W4J.3 Zhou, Rui,- M1B.3, W3E.7 Zhou, Wen,- Tu2G.6, Tu3J.4, W2B.10, W2B.25, Th1I.2, Th3H.3 Zhou, Xiang,- W3D.1 Zhou, Xu,- M1G.5, W1H.5, W3H.5 Zhou, Yanyan, - M4I.3 Zhou, Zhiyan,- M3F.1 Zhou, Zichuan, - M3E.5, M3F.3, W2A.7, W4F.3 Zhu, Bowen,- W2B.10, W2B.25, Th3H.3 Zhu, Chen,- M1G.5, W1H.5, W3H.5, Th2A.22 Zhu, Daniel,- Tu2E.4 Zhu, Jian,- W4J.3 Zhu, Jinglong,-W2A.13 Zhu, Min,- Tu3D.1, Tu3J.1, Tu3J.4, Tu3J.5, Tu3J.7, W2A.20, W3F.2, W3F.3, W4J.2, Th1I.2 Zhu, Paikun,- W3F.6, W4E.3 Zhu, Shengjie,-W2B.6 Zhu, Shiyang,-W2B.1 Zhu, Xiaotian,- W2B.29 Zhu, Xinyi,- M1J.5, W4C.3 Zhu, Yanjun,- Tu3I.7 Zhu, Ying,- M2J.4 Zhu, Yixiao,- Tu2J.2, Tu2J.5, Th1F.6 Zhu, Yuanming,- M3I.4 Zhu, Ziyi,-W1G.1 Zhu, Zuqing,- Th1D.4 Zhuge, Qunbi,- Tu2J.2, Tu2J.5, Th1F.6 Ziari, Mehrdad,-W3H.1 Zibar, Darko,- M2J Zilkie, Aaron, - M1E.6, Th1A.6 Zimmermann, Lars,- M3I.3 Zoldák, Martin,- Tu3I.3 Zou, Dongdong,- Th1E.2 Zou, Hong,- Th3D.1 Zou, Jim,- M3Z.7 Zou, Kaiheng, - M3F.4, W2A.32, Th3H.1 Zou, Xihua,- W2B.27

Zou, Yang,- W2B.11 Zou, Yucong,- Tu3J.1, Tu3J.7, W2A.20, W3F.2, W3F.3, W4J.2 Zuo, Mingqing,- W2B.16, W3D.4, W4D.6, W4H.7 Zussman, Gil,- W3H.4 Zvěrina, Jakub,- Tu3I.3