Control Planes for Optical Switching

George Papen

UC San Diego

Opportunities and Challenges for Optical Switching in the Data Center

OFC Workshop 2019
Practical Optical Switching in Data Centers

Hardware Issues
- Link-level reconfiguration time dominates physical switch time
- Synchronization is hard
- Links w/burst-mode RXs are more complex

Software Issues
- Centralized scheduling does not scale
- Software has no firm concept of ``Go now!”
- Unacceptable delay for μs (or less) switching

A New Solution RotorNet
- Decouple scheduling and routing
- Decentralized control plane
- Hide delay w/parallelism
Hardware Issues: Reconfiguration Time

• Research at IBM w/UCSD intern using nanosecond Si-P switch
• Goal: minimize link-level reconfiguration time of the switch
 (Time during which data cannot reliably transit the network)
• Includes:
 – Switch reconfiguration time
 – Clock Data Recovery (CDR) locking time
 – Synchronization guard delays

![Diagram of system-level reconfiguration time with guards and phases]

OFC 2018: A. Forencich et. al, “System-Level Demonstration of a Dynamically Reconfigured Burst-Mode Link Using a Nanosecond Si-Photonic Switch”
System Reconfiguration Time Testbed

• Data Plane

- 100G PSM-4 Transmitter (QSFP28)
- 2x2 Si-Ph Switch
- Pattern Generator
- Switch Control
- Xilinx Virtex Ultrascale FPGA (VCU108 board)
- BPF
- PDFA
- VOA
- Power meter
- Error Detector
- Burst Mode Receiver
- Demux board (1:16)
- Trigger Generator
- Control plane
 - Xilinx XVCU095 FPGA
 - 25 Gbps pattern generator
 - Trigger generator, switch interface
 - 25 Gbps gated error detector

~ 1 ns Si-P switching (physical response)
Measured Waveforms of Photonic Switch and BM-RX

<table>
<thead>
<tr>
<th>Payload size (B)</th>
<th>2048</th>
<th>1024</th>
<th>2048</th>
<th>1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data rate (Gbps)</td>
<td>12.5</td>
<td>12.5</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Cycle time (ns)</td>
<td>1366</td>
<td>730</td>
<td>858</td>
<td>460</td>
</tr>
<tr>
<td>BM-Switch time (ns)</td>
<td>90</td>
<td>90</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Duty cycle (%)</td>
<td>93</td>
<td>87</td>
<td>93</td>
<td>87</td>
</tr>
</tbody>
</table>

Reconfiguration 60-90x slower than physical switch time!
Software Issues
The Centralized Control Issue

Data plane doesn’t scale to entire datacenter!

Information required for scheduling not locally available
Steps in Centralized Scheduling

- Collect demand information from endhosts
- Send demand information over a network to central location
- Form the traffic matrix
- Factor traffic matrix into a sequence of switch states
- Finally! Set the switch
A Centralized Control Plane - ReacToR

“A multiport microsecond optical circuit switch for data center networking,” PTL 2013

![Diagram of control plane and circuit switch](image-url)
Time-Varying Demand

- Control plane tries to allocate circuits based on calculated schedule
- Control plane prototype was slow, did not always schedule correctly, and does not scale – hard lesson learned!

“Circuit Switching Under the Radar with REACToR,” NSDI 2014
A New Solution - RotorNet

- No centralized control – inherently more scalable!

- Co-design of optical switch and network

 Why build a large, fast crossbar that you cannot control?

- Parallelism decouples minimum latency from switching time

TOMORROW: Max Mellette, invited talk M2C.3, Monday 11 AM, Room 3.
“A Practical Approach to Optical Switching in Datacenters”
RotorNet has no Central Control

RotorNet: A Scalable, Low-complexity, Optical Datacenter Network, Sigcomm ‘17
Summary

• Mimicking the electronic packet-switched network control plane leads to an optical circuit switch that does not scale

• Even w/o centralized scheduling, the control plane is hard
 • Must reduce/hide system reconfiguration time
 • Must synchronize “asynchronous” end hosts

• RotorNet addresses control plane issues by:
 • No centralized scheduler
 • Using parallelism to bypass system reconfiguration delay
 • Still must address synchronization with end hosts
Contributing Researchers

Systems

- **UC San Diego**: Max Mellette, George Papen, George Porter, Alex C. Snoeren, Geoffrey M. Voelker, Amin Vahdat, with students Nathan Farrington, Rishi Kapoor, He Liu, Feng Lu, Rob McGuinness, Arjun Roy, Malveeka Tewari

- **CMU**: David G. Andersen, Srinivasan Seshan, with students Matthew K. Mukerjee, Conglong Li, Nicolas Feltman

- **Intel**: Michael Kaminsky

Hardware

- **UC San Diego**: Joe Ford, Max Mellette, George Papen, P.-C. Sun, with students Alex Forencich, Max Mellette, Glenn M. Schuster

- **IBM**: Nicolas Dupuis, Christian Baks, Benjamin G Lee, Laurent Schares

- **Technical University of Denmark**: Valerija Kamchevska (student)