

Moore's Law for Networking

Moore's Law for Networking

Moore's Law for Networking

The (not so) perfect storm!

The (not so) perfect storm!

- 1. Non-CMOS dependent
- 2. Optics already used for transmission
- 3. Ultra-low latency

Opportunities...and Challenges!

Opportunities...and Challenges!

A fundamentally different abstraction From asynchronous packet switches to synchronous circuit switches

Opportunities...and Challenges!

We need to consider the implications for the whole system (burst CDR, scheduling, synchronization, congestion control, ...)

It's not just about performance...

Let's do it together!

Plan for today

- Hitesh Ballani (Microsoft Research)
 - Optics for the Cloud: Trends, Challenges and Opportunities
- Eitan Zahavi (Mellanox)
 - Optical Data Centers: Fundamental and Other System Considerations
- Mike Frankel (Ciena)
 - Optical Switching for Link Bandwidth Adaptation in Future Data-center Networks
- Benjamin Lee (IBM Research)
 - Platforms for Integrated Photonic Switching Modules
- George Papen (UC San Diego)
 - Control Planes for Optical Switches
- Roberto Proietti (UC Davis)
 - Control Plane Solutions for Scalable and Modular Optically Interconnected Datacenters