

Optical switching for link bandwidth adaptation in future data-center networks

Michael Frankel Vladimir Pelekhaty John Mateosky

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

Objective of this work

- Leverage baseline static network performance
- Only low-radix electrical switches
- Add optical switch to improve performance
 - Only <u>slow</u> optical switching
 - Standard protocols at edge (application and server layer)
 - Avoid centralized control plane and scheduling
 - <u>Static routing</u> tables \rightarrow no update delays
 - Standard optical transceivers (no λ tuning, no burst mode RX, etc.)

STRAT – Structured ReArranged Topology based on flat, regular graph Optical switching resolves bandwidth hot-spots

Alternative to Clos is possible: STRAT flat mesh topology

(Circular representation)

- Eliminate Leaf / Spine switch layers!
- TOR is the only switch that needs to be deployed and managed

Fully passive static optical interconnect among TORs

STRAT flat mesh is promising ... but is it **Scalable**?

STRAT based on optical interconnect

ALL-OPTICAL interconnect may be static or augmented with optical switching Spatially separated for failure decorrelation

Each TOR has 16 near-neighbors (i.e. 16 network 'ports')

Typical DC Layout

Small network with Mesh U/ECMP example (i.e. Unequal Multi-Path)

Lets look at above network, considering Switch 1 only

ciena

• The following 'ECMP' table is created at Switch 1 with corresponding port assignments

	Destination Switch	Primary ECMP port assignments	Alternate ECMP port assignments	
	2	1		
	3	2, 3		
	4	4, 5		
	5	4, 5		
Copyrigl	6	1, 2, 3	4, 5	

7

Mega DC: Clos vs. STRAT (no optical switch)

Example small STRAT network – with Optical Switch

Illustrated operation of optical switch

1. 1st port filled

cien

- 2. Different port filled
- 3. 1st port Queue starts getting busy \rightarrow fill 2nd channel
- 4. 1st and 2nd queues busy \rightarrow fill 3rd channel
- 5. Packet Switch detects ECMP group near exhaust
 - Packet switch requests more bandwidth from Optical switch
 - Optical switch reallocates free ports to busy ECMP group
- Push new ECMP port association to affected Packet switches (forwarding table stays the same)

STRAT based on optical switch

Control Plane switch Coordination -- Slow

Operation and requirement

Operation:

- TOR: detect local congestion + local idle ports → send BW request and idle port list to control plane
- Control plane: reserve end-point idle ports (bi-dir), flip optical switch, update ECMP groups
- Newly "idle" ports do not need explicit broadcast to control plane

Requirements and Limitations:

- TOR port ECMP members must be separable at centralized switch
 - Parallel fibers (PSM transceiver) \rightarrow may be hard to cable, but avoids wavelength blocking issues
 - WDM \rightarrow demux/remux at optical switch \rightarrow some wavelength blocking constraints exist
 - Benefits from more parallelized Transceivers, i.e. 8 x 50Gb
- TOR port ECMP members use weighted fill order → available from commercial ASICs
- As flowlets stop/start → ECMP loading shifts <u>away</u> from high-weight ports (to low-weight)

NOTE: Electrical Xpoint switch is also possible

- Solves optical granularity and wavelength conversion issues
- Doubles transceiver count

Summary

- STRAT offers excellent baseline static network performance
- Only <u>low-radix electrical</u> switches (10 to 16 network ports)
- Optical switch improves performance
 - Only <u>slow</u> optical switching
 - Burst traffic absorbed at electronic edge queues
 - <u>Standard protocols at edge (application and server layer)</u>
 - No need to: coordinate schedules, separate mice/elephant, etc.
 - Distributed, localized control plane
 - <u>Static routing</u> tables \rightarrow no update delays
 - Standard optical transceivers (no λ tuning, no burst mode RX, etc.)

Thank You!

