Optics for the Cloud Opportunities and Challenges

Hitesh Ballani

Daniel Cletheroe, Paolo Costa, Istvan Haller, Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn Thomsen

Microsoft Research

Will free scaling of the network continue?

Requirements for data center switching

- 1. Ultra-fast
 - nanosecond switching

Bursty cloud applications

- 90% packets less than 576 bytes

Requirements for data center switching

- 1. Ultra-fast
 - nanosecond switching
- 2. Scalable (ideally, high-radix)- flat network
- 3. Reliable and easy to manage

Flatter network

Could photonics offer a new growth curve?

Potential benefits

Low and predictable latency

Why the hold-up?

Bridging the last mile

A fundamentally different abstraction From asynchronous packet switches to synchronous circuit switches

Lots of very hard problems to solve to make optical switching practical

Need for cloud-centric, cross-layer solutions

Two case studies

Problem	Traditional solution
Lack of buffering	Centralized Scheduler
Sub-nanosecond CDR	-

Case study #1: Scheduling the network

Building a data center wide scheduler is hard Scale to 100K servers, Infer demand, Communicate demand

Scheduler-less network [Cheng et al., 2000]

A permutation of connections N-1 time slots Time slot, 2 4 5 2 F F Ε F G H Α В F В E G H A H A B F G Ε D В H A Ε G В Ε H A D С D G B Ε F A F F B Π G

Static pre-defined schedule (a cyclic permutation)

Scheduler-less network

[Cheng et al., 2000]

Scheduler-less network [Cheng et al., 2000]

Good trade-off

- Through and latency overhead of 2-hop paths
- + No scheduling!

"Shoal: A Network Architecture for Disaggregated Racks", Cornell and Microsoft Research, NSDI 2019 "RotorNet: A Scalable, Low-complexity, Optical Datacenter Network", UCSD, SIGCOMM 2017

Case study#2: Clock and Data Recovery

Today's network

- Links are point to point and always on
 - CDR Locking time does not matter
- Links can be established every few ns
 - Locking time impacts overall throughput

High locking time impacts network throughput

* A Cevrero et al., IBM Research and EPFL, OFC 2018

Need for sub-nanosecond CDR

Phase caching: sub-nanosecond CDR

But Optical Switches <u>require</u> <u>synchronisation</u> to avoid packet collisions! <u>Synchronous</u>

CDR problem reduced to phase discovery But it can still take >40ns to recover phase

Phase does not change often, cache it!

Fast optical switching starts looking viable

Cross-layer approach that leverages DC peculiarities to achieve sub-ns CDR

Good trade-off in this setting

"Sub-Nanosecond Clock and Data Recovery in an Optically-Switched Data Centre Network", UCL and Microsoft Research, ECOC PDP, 2018

Innovation across the cloud stack needed Need an end-to-end, cloud-centric approach to make optical switching viable

\bigcap	Architecture	New algorithms
	Stack	New protocols
	Network	New hardware/software
	Physical	New optics

http://aka.ms/OpticsForTheCloud