

Optical Adhesives

Adhesives for Optical Waveguides

If you are seeking PLC and fiber array adhesion with high reliability, try these products

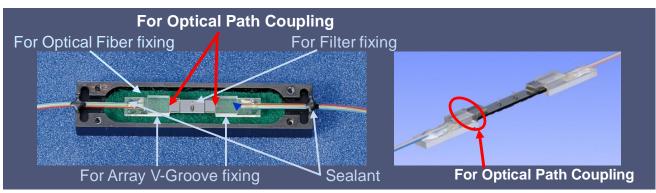
Adhesives for Optical Waveguides

In order to achieve high reliability, a product must clear the tests conducted by the users themselves. If you have had even just a bit of dissatisfaction in reliability test results, please put NTT-AT's adhesives to the test.

We will also offer consulting regarding adhesion related issues.

Excellence in Durability

Acrylate-based adhesives which have cleared a large number of reliability tests


Adjustable Refractive Index

Epoxy adhesives with the same refractive index as quartz to deliver low reflectance

Simple Operability

The UV curing allows for adhesion in a short time frame

Structural Images

Standard Products, Properties

ltana	Conditions	11	Epo	оху	Acry	/late
Item	Conditions	Units	GA700H	GA700L	AT6001	AT8224
Curring Conditions	UV Intensity	mW/cm ²	30	10	10	10
Curing Conditions	Time	Min	10	5	5	5
Viscosity	25°C	mPas	280	250	470	145
	589nm		1.458	1.456	1.505	1.505
Refractive Index	830nm		1.453	1.450	1.495	1.496
(after curing)	1300nm	_	1.448	1.446	1.490	1.491
	1550nm		1.447	1.445	1.489	1.489
	850nm		92	94	93	86
Optical Transmittance	1300nm	% (1mm)	91	94	91	89
	1550nm	(1000)	88	92	86	82
Glass Transition Temperature (Tg)	$\text{Tan}\delta_{\text{max}}$	°C	145	46	0	115
Shrinkage	Density change	%	4	4	7	9
Hardness	Shore D	-	80	44	24	38
Thermal Expansion Coefficient(CTE)	25–100°C	ppm/°C	81	210	148	123
Elastic Modulus	25°C	Мра	1300	480	18	67
	Initial period		>247	>154	99	>209
Shear Bond Strength	121°C, 100% after 20H	kgf/cm ²	72	132	91	83
Water Absorption	1mm, after 24H	%	0.5	0.8	3	10
Maight Loss on Llosting	100°C, 100H		0	5	3	3
Weight Loss on Heating	150°C, 10H	wt%	0	11	3	5

Adjustable Refractive Index Products, Properties

Item	Conditions	Units	High-Tg Type	Low-Tg Type
Curring Conditions	UV Intensity	mW/cm ²	30	10
Curing Conditions	time	min	10	10
Viscosity	25°C	mPas	250 - 2000	200 - 560
Refractive Index	1550nm	-	1.446 - 1.547	1.445 - 1.549
Optical Transmittance	1550nm	%	89 - 90	86 - 90
Tg	$tan\delta_{max}$	°C	140 - 150	40 - 50
shrinkage	Density change	%	3 - 5	4 - 8
Hardness	Shore D	-	75 - 80	23 - 45
CTE	25–100°C	ppm/°C	60 - 80	80 - 220

For more information

http://www.ntt-at.com/product/adhesive/

201902A

* All company names, product names, etc., indicated herein are trademarks or registered trademarks of each respective company.

- Please understand that all comments and data recorded herein may be subject to change without prior notification.
- *The values in the table above are not specifications.

NTT Advanced Technology Corporation

Optical Products Business Unit

NTT Musashino R&D Center, 3-9-11, Midori-cho, Musashino-shi, Tokyo, 180-0012, Japan TEL: +81 422 39 8934, FAX: + 81 422 39 8935

Optical Adhesives Adhesives for Fiber Array

Introducing the adhesives with high moisture resistance and excellent workability for fiber array assemblies

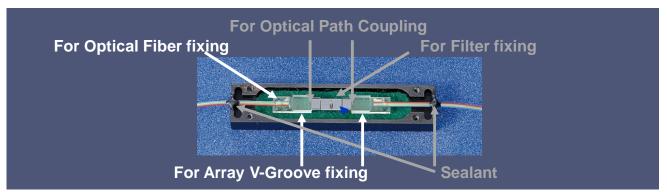
V-Groove Fixing / Optical Fiber Fixing Adhesives for Fiber Array

Fiber arrays are used for the input and output of optical waveguide devices. As adhesives used for fixing the V-Grooves, AT3727E and AT3728E have

realized price reductions while enhancing moisture resistance than conventional products with over 20 years more experience. As adhesives for Optical Fiber fixing, the AT9575M and AT8105 have gained popularity for their good workability as non-fluid adhesives.

High Moisture Resistance and Excellent Durability

For a Fiber Array, no peeling after 2,000 hours at 85°C, 85 % humidity. * Our company test results


Can Be Polished

The adhesives for V-Groove fixing can be polished after assembly.

Viscosity Appropriate for Usage Location makes it Easy to Use

The adhesives for fixing V-Grooves have a fluidity, while the optical fiber fixing adhesives are a paste suitable for protecting the fiber.

Structural Images

			V-Groove Fixing					Base Fixing		
Item	Conditions	Units	AT3925M	AT9390	AT9968	АТ3727Е	AT3728E	AT9575M	AT8105	
Viscosity	25°C	mPa∙s	200	600	70	400	400	Paste	Paste	
Refractive Index (after curing)	589 nm	-	1.519	1.492	1.512	1.574	1.573	-	-	
Curing	UV Intensity	mW/cm²	100	30	100	10	10	100	10	
Conditions	time	min	10	10	10	10	10	10	5	
Glass Transition Temperature (Tg)	$tan \delta_{max}$	°C	219	131	181	107	55	42	103	
Shrinkage	Density change	%	3	4	4	4	3	4	7	
Hardness	Shore D	-	88	81	85	83	20(A84)	35	78	
Thermal Expansion Coefficient (CTE)	25–100°C	ppm/°C	67	90	70	134	178	168	111	
Shear Bond	Initial period		>99	>194	>143	>147	>232	>221	>226	
Strength	121°C100% after 20H	kgf/cm ²	>69	>142	>98	>147	>230	>122	>200	
Bending	Initial period		-	31	26	34	43	-	-	
Adhesion Strength	121°C100% after 20H	kgf/cm ²	-	9	14	19	25	-	-	
Elastic Modulus	25°C	MPa	1340	1340	1250	1230	560	160	1880	
Water Absorption	1mm after 24h	%	2	0	1	0	1	1	3	
Weight Loss on	100° C100h	+0/	0	0	0	0	3	5	1	
Heating	150° C10h	wt%	0	0	0	0	3	8	2	

※ All company names, product names, etc., indicated herein are trademarks or registered trademarks of each respective company.
 ※ Please understand that all comments and data recorded herein may be subject to change without prior notification.
 ※ The values in the table above are not specifications.

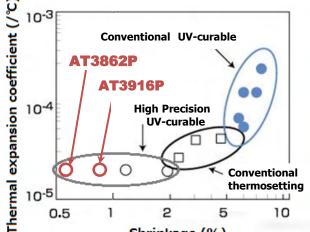
For more information

http://www.ntt-at.com/product/adhesive/

NTT Advanced Technology Corporation

Optical Products Business Unit

NTT Musashino R&D Center, 3-9-11, Midori-cho, Musashino-shi, Tokyo, 180-0012, Japan TEL: +81 422 39 8934, FAX: + 81 422 39 8935


NTTAT

Minimal position changes due to curing time and temperature

High Precision Adhesives

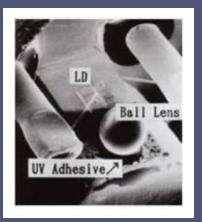
We recommend adhesives which can easy to fix optical components with sub-micron accuracy.

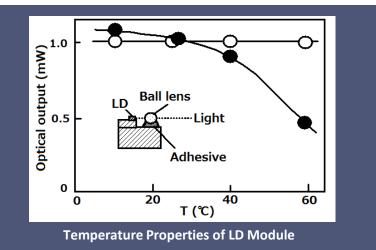
- Shrinkage rate during curing is very low (less than 0.5 %).
- Thermal expansion coefficient is small (less than 20ppm/°C).
- Using UV light curing makes alignment easy.

Shrinkage (%)

Excellent Durability

No peeling after 200 cycles in the heat cycle test (simplified test)


Low shrinkage rate


Shrinkage rate during curing is 0.5% (AT3862P)

Thermal expansion coefficient is small

CTE is less than 20ppm/°C

Configuration Image

Item	Conditions	Units	AT3862P	AT3916P
Viscosity	25°C	mPa·s	500,000	20,000
Curing Conditions	UV Intensity	mW/cm²	100	100
Curring Conditions	Time	min	2	5
Glass transition temperature (Tg)	$tan\delta_{\text{max}}$	°C	195	233
Rate of curing shrinkage	(Density change)	%	0.5	0.9
Hardness	Shore D	-	94	91
Thermal Expansion Coefficient (CTE)	25-100°C	ppm/°C	20	18
Elastic Modulus	25°C	MPa	3000	4600
Water Absorption	Thichness: 1mm, after 24H	%	0.3	0.2
Weight Loss on Heating	5wt%	°C	422	372

Durability Test Results

Item	Conditions	Units	AT3862P	AT3916P
	Initial period		>210	>220
Shear	121°C, 100% after 10H	hat long ²	>114	>128
Bond Strength	260°C for 5min Process	kgf/cm ²	262	194
	Heat Cycle, -40 - 85° C, 200cycles		98	237
	Appearance after Heat Cycle	-	No peeling	No peeling

*These products are transported at normal temperature. However, please store in a frozen state.

% All company names, product names, etc., indicated herein are trademarks or registered trademarks of each respective company.
 % Please understand that all comments and data recorded herein may be subject to change without prior notification.
 % The values in the table above are not specifications.

For more information

http://www.ntt-at.com/product/adhesive/

NTT Advanced Technology Corporation

Optical Products Business Unit

NTT Musashino R&D Center, 3-9-11, Midori-cho, Musashino-shi, Tokyo, 180-0012, Japan TEL: +81 422 39 8934, FAX: + 81 422 39 8935

For those seeking resins with a refractive index of 1.6 or greater

High Refractive Index

At NTT-AT, using its refractive index control technology and optical loss reduction technology that are the basis for adhesives of optical communication, has developed for sale resins with a high refractive index of 1.6. For the high refractive index resins, by adding high

refractive index fillers as in the photo on the right, we are able to manufacture resins with a refractive index of 1.9.

These resins are aimed at usage in the fields of optical recording, display technology, optical energy uses, etc.

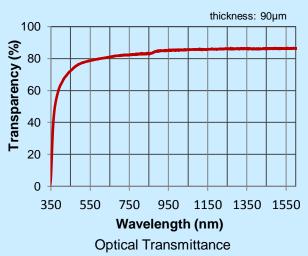
Transparency of NTT-AT's resin coated substrate

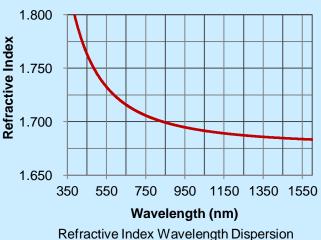
* Refractive Index : 1.96 (@403nm)

* Coat Thickness : 1 µm

High Transparency

Possible to fabricate high refractive index resin coat with good transparency which haze value is 1 or less.


Refractive Index Adjustable


Refractive Index adjustable to 1.6 or more

Customize

Possible to respond several kind of requests such as with/without solvent or adjusting the viscosity.

Optical Features

		Test method:		Acry	/late	Epo	оху
	Item	Condition	Units	#18165	#6205	E3754	#7200
Before curing	Viscosity	25°C	mPa∙s	9	20 ^{*1}	1200	7000
	Curing	UV Intensity	mW/cm ²	10	100	100	100
0	Conditions	Time	min	5	5	5	10
	Refractive Index	589nm	-	1.675	1.720	1.603	1.627
	Glass Transition Temperature (Tg)	$tan\delta_{\text{max}}$	°C	113	68	73	63
	Thermal Expansion Coefficient	TMA : α1	ppm/ ^o C	144	93	107	60
	(CTE)	TMA : α2	ppm/ C	182	191	212	178
After	Hardness	Shore D	-	D67	D70	D76	D83
curing	Elastic Modulus	25°C	MPa	1000	300	2000	1000
		450nm		94	72 ^{*2}	92	78
	Optical Transmittance	540nm	% (Thickness 50μm)	96	78 ^{*2}	96	88
		630nm		96	81 ^{*2}	96	92
	Shear Bond Strength	glass/glass	kgf/cm ²	>48	35	>280	55

*1 : Tends to crystallize at low temperatures.

 *2 : Thickness 90 μm

* All company names, product names, etc., indicated herein are trademarks or registered trademarks of each respective company. * Please understand that all comments and data recorded herein may be subject to change without prior notification.

* The values in the table above are not specifications.

For more information

http://www.ntt-at.com/product/adhesive/

NTT Advanced Technology Corporation

Optical Products Business Unit

NTT Musashino R&D Center, 3-9-11, Midori-cho, Musashino-shi, Tokyo, 180-0012, Japan TEL: +81 422 39 8934, FAX: + 81 422 39 8935

201902A

Optical Adhesives

Low Refractive Index Resins

For those seeking resins with a refractive index of 1.4 or less

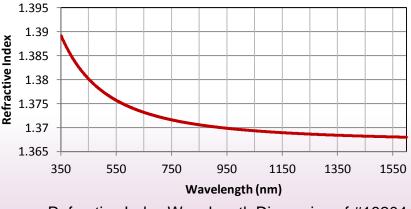
Low Refractive Index Resins

At NTT-AT, using its refractive index control technology and optical loss reduction technology that are the basis for adhesives of optical communication, has developed for sale resins with a low refractive index of 1.4.

These resins are aimed at usage in the fields of optical recording, display technology, optical energy uses, etc.

High Transparency

Refractive Index Adjustable


90 % or more transparency at 1mm thickness

Refractive Index adjustable to 1.4 or less

High accuracy Refractive Index Control

The accuracy of adjusting refractive index is ± 0.005

Optical Features

Refractive Index Wavelength Dispersion of #18204

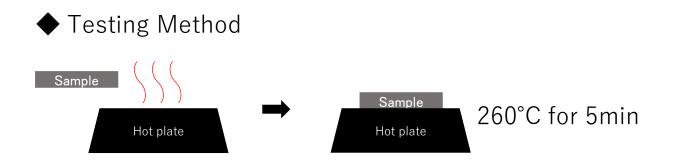
		Test method:		Acry	late	Ероху
	ltem	Condition	Units	#18204	#18114	E3810
Before curing	Viscosity	E-type viscometer: 25°C	mPa∙s	7	25	130
	Curing	UV Intensity	mW/cm ²	10	10	10
	Conditions	Time	min	1	5	10
	Refractive Index	589nm	-	1.375	1.400	1.438
	Glass Transmission Temperature (Tg)	$tan\delta_{max}$	°C	18	94	103
	Thermal Expansion	TMA : α1	ppm/ ^o C	-	140	110
After	Coefficient (CTE)	TMA : α2	ppm/ °C	180	180	240
curing	Hardness	Shore D	-	D20 A85	D72	D78
	Elastic Modulus	Dynamic viscoelasticity : 25°C	Мра	13	800	1000
		450nm		89	92	76
	Optical Transmittance	540nm	% (Thickness 1mm)	91	94	86
		630nm		91	94	89
	Shear Bond Strength	glass/glass : 25°C	kgf/cm ²	27	26	>61

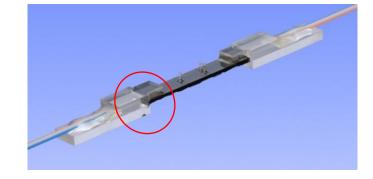
※ All company names, product names, etc., indicated herein are trademarks or registered trademarks of each respective company.
 ※ Please understand that all comments and data recorded herein may be subject to change without prior notification.
 ※ The values in the table above are not specifications.

For more information

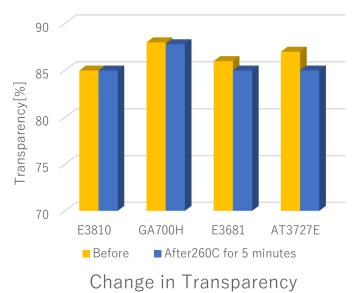
http://www.ntt-at.com/product/adhesive/

201902A

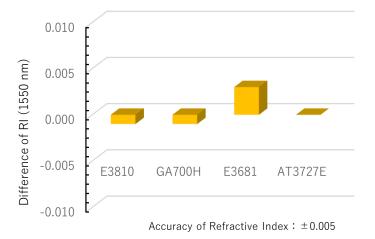

NTT Advanced Technology Corporation


Optical Products Business Unit

NTT Musashino R&D Center, 3-9-11, Midori-cho, Musashino-shi, Tokyo, 180-0012, Japan TEL: +81 422 39 8934, FAX: + 81 422 39 8935



Optical Adhesives that withstand a high temperature process for Silicon Photonics



◆Test Results

Change in Bending strength (before the process: 100%)

Change in Refractive Index

			In optical path					Fiber fixation		
Product Number			E3	E3810 GA		GA700H E36		681	AT3	727E
Substance ⁻	Гуре		e	роху	ерс	ху	ep	юху	ероху	
Viscosity	25°C	mPa∙s		100	28	0	4	00	4	00
	Intensity	mW/cm2		10	30	0		10	1	0
Curing Conditions	Time	min		10	1	0	10		10	
	Post bake	_	80 [°]	°C/1h	80°C	/1h	100°C/1h		80°C/1h	
260°C for 5 minute	es Process		Before	After	Before	After	Before	After	Before	After
Transparency(1550nm)	Thickness 1mm	%	85	85	88	88	86	85	87	85
Bending Bond Strength(3 po	ints)	kgf/cm ²	18	15	36	32	26	24	34	34
Refractive Index, after curing	1550nm	-	1.427	1.426	1.447	1.446	1.545	1.548	1.552	1.552
Tg	$ an\delta_{\max}$	С°	103	103	145	147	143	147	107	112
Hardness	25°C	Shore D	78	65	80	82	85	86	83	83
Thermal expansion Coefficient	25-100°C	ppm∕°C	110	102	81	68	60	54	134	115
Weight loss at 260°C before re-flow	TG curve by TG-DTA	%	2.9	-	1.8	_	1.2	_	0.2	_
5% weight loss before re-flow	TG curve by TG-DTA	°C	292	-	302	-	366	_	313	-
Curing shrinkage		%	5	-	4	-	4	-	4	-

Not guaranteed values.

NTT Advanced Technology Corporation

For the Openings and Junctions, etc. of Protective Casing for Parts.

Not containing phthalate ester which has been listed in the RoHS Directive (EU)2015/863

Sealants for Optical Parts

In order to increase the long term reliability of mechanical protection, moisture prevention, etc., optical parts are housed in a protective case made by metal or plastic. Through the special features of these sealants used for the openings and junctions of protective cases , the reliability, especially moisture prevention reliability is greatly expanded. We introduce here sealants that were developed for the purpose of preventing moisture in optical parts. If you have been unsatisfied with conventional products , please test out these materials.

Possible Usage Examples

- Moisture prevention sealant for protective casing for optical parts for electronic component parts and general electric parts, etc.
- Moisture resistant adhesives for assembly of all types of devices

Low Moisture Permeability	Flexibility	Long Pot Life
The low moisture permeability type sealant has a low moisture permeability coefficient and shuts out moisture (humidity).	The high flexibility type sealant gives very little internal stress which causes transmission loss in optical fiber.	The improvement in workability in our lineup delivers a long pot life.

Structural Images

Sealant 🗲

Low Moisture Permeability Type, Properties

Item	Conditions		Units	OS5958	OS5962								
Curing Conditions	-		-		-		tions -		-		- Room		24H or 80°C, 1H
Pot Life	r.t		min	120	120								
Moisture Permeability	85° C	, 85%	cc•cm/cm²•sec•cmHg	1.6×10 ⁻⁸	0.7×10^{-8}								
Hardness	25 [°]	С	Shore D	47	66								
Glass Transition Temperature (Tg)	$tan \delta_{max}$		°C	45	49								
CTE	25-100° C		25–100°C		ppm/°C	190	100						
Weight loss	oss 100°C, 100H		wt%	0.7	-								
Shear Bond	Initial p	period		131	146								
Strength	After 121°C,	21°C, 10H	kgf/cm ²	142	204								
to SUS	100%	20H		68	207								
Dre ourie a State	Soluti	on A		White	paste								
Pre-curing State	Soluti	on B	-	Transparent fluid (light yellow)									
Duine and the set	Soluti	on A		Ероху	Ероху								
Primary Ingredient	Soluti	on B	-	Amine	Amine								
Mixing Ratio	Weight A : B		/ixing Ratio Weight A : B		-	10:3	21:3						
	Special	Features		Low Viscosity	High Moisture Resistance								

High Flexibility Type, Properties

ltem	Conditions		Units	OS5980	OS-48						
Curing Conditions	-		-		-		-		-	80°C, 1H	r.t., 24 H or 100°C, 1H
Pot Life	r.t		min	120	180						
Moisture Permeability	85°C,	85%	cc•cm/cm²•sec•cmHg	30 × 10 ⁻⁸	1 × 10 ⁻⁸ (75° C, 90%)						
Hardness	25°	С	Shore D	20	66 (Shore A)						
Glass Transition Temperature (Tg)	tanδ	max	°C	-55	-46						
CTE	25 – 100° C		25 – 100° C		ppm/°C	145	200				
Weight loss	100°C, 100H		wt%	2.0	0.4						
Shear Bond	Initial p	eriod		24	11						
Strength	After 121°C,	10H	kgf/cm ²	44	-						
to SUS	100%	20H		50	-						
Dro. ouring State	Soluti	on A		Transparent	White						
Pre-curing State	Soluti	on B	-	Black	Black						
Duine and In such is not	Soluti	on A		Amine	Butylene						
Primary Ingredient	Soluti	on B	-	Modified Epoxy	Butylene						
Mixing Ratio	io Weight A : B		-	1:2	1:1						
	Special	Features		S3903-5 RoHS confirming product	Long Pot Life Low Hardness						

All company names, product names, etc., indicated herein are trademarks or registered trademarks of each respective company.
 Please understand that all comments and data recorded herein may be subject to change without prior notification.
 The values in the table above are not specifications.

For more information

http://www.ntt-at.com/product/adhesive/

NTT Advanced Technology Corporation

Optical Products Business Unit

NTT Musashino R&D Center, 3-9-11, Midori-cho, Musashino-shi, Tokyo, 180-0012, Japan TEL: +81 422 39 8934, FAX: + 81 422 39 8935 201902B