Thin-Film RF/Microwave Inductor Technology
Accu-L® Series
AEC-Q200 High-Q RF Inductor - L0402 & L0805

ACCU-L® TECHNOLOGY
The L0402 LGA Inductor and the L0805 Accu-L® SMD Inductor are based on thin-film multilayer technology. This technology provides a level of control on the electrical and physical characteristics of the component which gives consistent characteristics within a lot and lot-to-lot. The original design provides small size, excellent high-frequency performance and rugged construction for reliable automatic assembly. The AEC-Q200 Qualified Accu-L® Series is designed to meet the demanding performance specifications in automotive signal and power applications.

FEATURES
• High Q
• RF Power Capability
• High SRF
• Low DC Resistance
• Ultra-Tight Inductance Tolerance
• Standard 0402 and 0805 Chip Sizes
• Low Profile
• Rugged Construction
• Taped and Reeled

APPLICATIONS
• Vehicle to Vehicle Communications
• Infotainment
• Telematics
• GPS
• Radar
• Vehicle Locations Systems
• Keyless Entry
• Filters
• Matching Networks

0402 DIMENSIONS: millimeters (inches)
(Bottom View)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>1.00±0.10 (0.039±0.004)</td>
</tr>
<tr>
<td>W</td>
<td>0.58±0.07 (0.023±0.003)</td>
</tr>
<tr>
<td>T</td>
<td>0.35±0.10 (0.014±0.004)</td>
</tr>
<tr>
<td>A</td>
<td>0.48±0.05 (0.019±0.002)</td>
</tr>
<tr>
<td>B</td>
<td>0.17±0.05 (0.007±0.002)</td>
</tr>
<tr>
<td>S, H</td>
<td>0.064±0.05 (0.003±0.002)</td>
</tr>
</tbody>
</table>

0805 DIMENSIONS: millimeters (inches)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>2.11±0.10 (0.083±0.004)</td>
</tr>
<tr>
<td>W</td>
<td>1.5±0.10 (0.059±0.004)</td>
</tr>
<tr>
<td>T</td>
<td>0.9±0.13 (0.036±0.005)</td>
</tr>
<tr>
<td>B</td>
<td>0.25±0.15 (0.010±0.006)</td>
</tr>
</tbody>
</table>

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.
HOW TO ORDER

<table>
<thead>
<tr>
<th>L</th>
<th>0805</th>
<th>4R7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>Inductor</td>
<td>(2) I</td>
</tr>
<tr>
<td>Size</td>
<td>0402</td>
<td>0805</td>
</tr>
</tbody>
</table>

ELECTRICAL SPECIFICATIONS TABLE FOR ACCU-L® 0402

<table>
<thead>
<tr>
<th>Size</th>
<th>Available Inductance</th>
<th>Test Frequency</th>
<th>-40°C</th>
<th>0°C</th>
<th>70°C</th>
<th>SRF</th>
<th>R<sub>d.c. max. (Ω)</th>
<th>I<sub>d.c. max. (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>±0.05 nH</td>
<td>450MHz</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0.06</td>
<td>400</td>
<td>0.10</td>
</tr>
<tr>
<td>1 nH</td>
<td>±0.1 nH</td>
<td>900MHz</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0.06</td>
<td>400</td>
<td>0.10</td>
</tr>
<tr>
<td>5 nH</td>
<td>±0.5 nH</td>
<td>1900MHz</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0.06</td>
<td>400</td>
<td>0.10</td>
</tr>
<tr>
<td>10 nH</td>
<td>±2.0 nH</td>
<td>2400MHz</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0.06</td>
<td>400</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Please contact factory for intermediate inductance values within the indicated range.

ELECTRICAL SPECIFICATIONS TABLE FOR ACCU-L® 0805

<table>
<thead>
<tr>
<th>Test Frequency</th>
<th>-40°C</th>
<th>0°C</th>
<th>70°C</th>
<th>SRF</th>
<th>R<sub>d.c. max. (Ω)</th>
<th>I<sub>d.c. max. (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>450MHz</td>
<td>±0.05 nH</td>
<td>450MHz</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0.06</td>
</tr>
<tr>
<td>900MHz</td>
<td>±0.1 nH</td>
<td>900MHz</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0.06</td>
</tr>
<tr>
<td>1900MHz</td>
<td>±0.5 nH</td>
<td>1900MHz</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0.06</td>
</tr>
<tr>
<td>2400MHz</td>
<td>±2.0 nH</td>
<td>2400MHz</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Please contact factory for intermediate inductance values within the indicated range.

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer by reference and should be reviewed in full before placing any order.

1. L, Q, SRF measured on HP 4291A, Boonton 34A and Wiltron 360 Vector Analyzer, RDC measured on Keithley 580 micro-ohmmeter.

2. L, Q, SRF measured on HP 4291A, Boonton 34A and Wiltron 360 Vector Analyzer, RDC measured on Keithley 580 micro-ohmmeter.
Thin-Film RF/Microwave Inductor Technology
Accu-L® Series
AEC-Q200 High-Q RF Inductor - L0402 & L0805

Typical Q vs. Frequency

L0805

![Graph showing typical Q vs. frequency for L0805.](image)

Measured on HP4291A and Boonton 34A Coaxial Line

Typical Inductance vs. Frequency

L0805

![Graph showing typical inductance vs. frequency for L0805.](image)

Measured on HP4291A and Wiltron 360 Vector Analyzer

Maximum Temperature Rise

at 25°C ambient temperature (on FR-4)

L0805

![Graph showing maximum temperature rise.](image)

Temperature rise will typically be no higher than shown by the graph.
The basis of these designs is:

- Both wave and reflow soldering.
- Component movement during soldering.

Component pads must be designed to achieve good joints and minimize defects. Pad designs are given below for different circuit board materials:

- **Pad extension about 0.8mm for wave soldering.**
- **Pad extension about 0.3mm for reflow.**
- **Pad overlap about 0.3mm.**

However, it is not advisable to go below this. It is recommended to decrease this to as low as 85% of component width, but it is not advisable to go below this.

Storage

- Components must be stored in an environmental chamber -55°C to +125°C.
- Components placed in environmental chamber -55°C to +125°C. No visible damage.
- Components mounted to a substrate. A force of 5N applied normal to the line joining the terminations and in a line parallel to the substrate. No visible damage.

Bend Strength

- Component placed in environmental chamber -55°C to +125°C. Tested as shown in diagram. No visible damage.
- Bend strength is measured using a universal testing machine.

Temperature Coefficient of Inductance (TCL)

- Component placed in environmental chamber -55°C to +125°C. The temperature coefficient is measured using a spectrometer.

- The temperature coefficient is calculated using the formula:
 \[\text{TCL} = \frac{L2-L1}{L1(T2-T1)} \times 10^n \]

- TCL = Temperature Coefficient of Inductance (°C/°C).

HANDLING

SMD chips should be handled with care to avoid damage from perspiration and skin oils. The use of plastic tipped tweezers or vacuum pick-ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized.

CIRCUIT BOARD TYPE

- All flexible types of circuit boards may be used (e.g. FR-4, G-10) and also alumina.

For other circuit board materials, please consult factory available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

ENVIRONMENTAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Test</th>
<th>Conditions</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solderability</td>
<td>Components completely immersed in a solder bath at 255 ± 5°C for 2 secs.</td>
<td>Terminations to be well tinned.</td>
</tr>
<tr>
<td>Leach Resistance</td>
<td>Components completely immersed in a solder bath at 260 ±5°C for 60 secs.</td>
<td>Dissolution of termination faces ≤ 15% of area. Dissolution of termination edges ≤ 25% of length.</td>
</tr>
<tr>
<td>Storage</td>
<td>12 months minimum with components stored in "as received" packaging.</td>
<td>Good solderability</td>
</tr>
<tr>
<td>Shear</td>
<td>Components mounted to a substrate. A force of 5N normal to the line joining the terminations and in a line parallel to the substrate.</td>
<td>No visible damage</td>
</tr>
<tr>
<td>Rapid Change of Temperature</td>
<td>Components mounted to a substrate. 5 cycles -55°C to +125°C.</td>
<td>No visible damage</td>
</tr>
<tr>
<td>Bend Strength</td>
<td>Tested as shown in diagram. 1mm deflection 20g/90° 0.5mm 45mm 45mm</td>
<td>No visible damage</td>
</tr>
<tr>
<td>Temperature Coefficient of Inductance (TCL)</td>
<td>Component placed in environmental chamber -55°C to +125°C.</td>
<td>+0 to +125 ppm/°C (typical) TCL = (\frac{L2-L1}{L1(T2-T1)} \times 10^n)</td>
</tr>
</tbody>
</table>

CLEANING RECOMMENDATIONS

Care should be taken to ensure that the devices are thoroughly cleaned of flux residues, especially the space beneath the device. Such residues may otherwise become conductive and effectively offer a lossy bypass to the device. Various recommended cleaning conditions (which must be optimized for the flux system being used) are as follows:

- Cleaning liquids: i-propanol, ethanol, acetylacetone, water, and other standard PCB cleaning liquids.
- Ultrasonic conditions: power – 20w/liter max., frequency – 20kHz to 45kHz.
- Temperature: 80°C maximum (if not otherwise limited by chosen solvent system).
- Time: 5 minutes max.

STORAGE CONDITIONS

Recommended storage conditions for Accu-L® prior to use are as follows:

- Temperature: 15°C to 35°C
- Humidity: ≤ 65%
- Air Pressure: 860mbar to 1060mbar

RECOMMENDED SOLDERING PROFILE

PREHEAT & SOLDERING

The rate of preheat in production should not exceed 4°C/second. It is recommended not to exceed 2°C/second.

Temperature differential from preheat to soldering should not exceed 150°C.

For further specific application or process advice, please consult AVX.

HAND SOLDERING & REWORK

Hand soldering is permissible. Preheat of the PCB to 100°C is required.

The most preferable technique is to use hot air soldering tools. Where a soldering iron is used, a temperature controlled model not exceeding 30 watts should be used and set to not more than 260°C. Max i mum allowed time at temperature is 1 minute. When hand soldering, the base side (white side) must be soldered to the board.

COOLING

After soldering, the assembly should preferably be allowed to cool naturally. In the event of assisted cooling, similar conditions to those recommended for preheating should be used.

RECOMMENDED SOLDERING PROFILE

HANDLING

SMD chips should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of plastic tipped tweezers or vacuum pick-ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized.

For automatic equipment, taped and reeled product is the ideal medium for handling should ensure that abrasion and mechanical shock are minimized.

HANDLING

SMD chips should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of plastic tipped tweezers or vacuum pick-ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized.

For automatic equipment, taped and reeled product is the ideal medium for handling should ensure that abrasion and mechanical shock are minimized.

Cooling

After soldering, the assembly should preferably be allowed to cool naturally. In the event of assisted cooling, similar conditions to those recommended for preheating should be used.

CLEANING RECOMMENDATIONS

Care should be taken to ensure that the devices are thoroughly cleaned of flux residues, especially the space beneath the device. Such residues may otherwise become conductive and effectively offer a lossy bypass to the device. Various recommended cleaning conditions (which must be optimized for the flux system being used) are as follows:

- Cleaning liquids: i-propanol, ethanol, acetylacetone, water, and other standard PCB cleaning liquids.
- Ultrasonic conditions: power – 20w/liter max., frequency – 20kHz to 45kHz.
- Temperature: 80°C maximum (if not otherwise limited by chosen solvent system).
- Time: 5 minutes max.

STORAGE CONDITIONS

Recommended storage conditions for Accu-L® prior to use are as follows:

- Temperature: 15°C to 35°C
- Humidity: ≤ 65%
- Air Pressure: 860mbar to 1060mbar

RECOMMENDED SOLDERING PROFILE

Hand Soldering & Rework

Hand soldering is permissible. Preheat of the PCB to 100°C is required.

The most preferable technique is to use hot air soldering tools. Where a soldering iron is used, a temperature controlled model not exceeding 30 watts should be used and set to not more than 260°C. Max i mum allowed time at temperature is 1 minute. When hand soldering, the base side (white side) must be soldered to the board.

Cooling

After soldering, the assembly should preferably be allowed to cool naturally. In the event of assisted cooling, similar conditions to those recommended for preheating should be used.

Cleaning Recommendations

Care should be taken to ensure that the devices are thoroughly cleaned of flux residues, especially the space beneath the device. Such residues may otherwise become conductive and effectively offer a lossy bypass to the device. Various recommended cleaning conditions (which must be optimized for the flux system being used) are as follows:

- Cleaning liquids: i-propanol, ethanol, acetylacetone, water, and other standard PCB cleaning liquids.
- Ultrasonic conditions: power – 20w/liter max., frequency – 20kHz to 45kHz.
- Temperature: 80°C maximum (if not otherwise limited by chosen solvent system).
- Time: 5 minutes max.

Storage Conditions

Recommended storage conditions for Accu-L® prior to use are as follows:

- Temperature: 15°C to 35°C
- Humidity: ≤ 65%
- Air Pressure: 860mbar to 1060mbar

Recommended Soldering Profile

HANDLING

SMD chips should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of plastic tipped tweezers or vacuum pick-ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized.

For automatic equipment, taped and reeled product is the ideal medium for handling should ensure that abrasion and mechanical shock are minimized.

Cooling

After soldering, the assembly should preferably be allowed to cool naturally. In the event of assisted cooling, similar conditions to those recommended for preheating should be used.

Cleaning Recommendations

Care should be taken to ensure that the devices are thoroughly cleaned of flux residues, especially the space beneath the device. Such residues may otherwise become conductive and effectively offer a lossy bypass to the device. Various recommended cleaning conditions (which must be optimized for the flux system being used) are as follows:

- Cleaning liquids: i-propanol, ethanol, acetylacetone, water, and other standard PCB cleaning liquids.
- Ultrasonic conditions: power – 20w/liter max., frequency – 20kHz to 45kHz.
- Temperature: 80°C maximum (if not otherwise limited by chosen solvent system).
- Time: 5 minutes max.

Storage Conditions

Recommended storage conditions for Accu-L® prior to use are as follows:

- Temperature: 15°C to 35°C
- Humidity: ≤ 65%
- Air Pressure: 860mbar to 1060mbar

Recommended Soldering Profile

Preheat & Soldering

The rate of preheat in production should not exceed 4°C/second. It is recommended not to exceed 2°C/second.

Temperature differential from preheat to soldering should not exceed 150°C.

For further specific application or process advice, please consult AVX.