TECs for TO Cans

Phononic’s high-performance TECs efficiently cool TO can lasers while reducing your overall TOSA power consumption. Configured to your specific application, this series can be used to cool a variety of TO can sizes, including TO56, TO40, and even as small as TO32. They are a great option for cost-effective, low-data-rate lasers from 1G-50G in passive optical networks, wireless network and FTTX applications. These TECs are excellent for use in any package or TOSA form factor where space is at a premium. Leverage our expertise to plan your future product roadmap. We will not limit you to standard products; all of our solutions are designed to meet your needs, and we ramp quickly to accommodate tight product launch timelines.

Features
- Small footprint
- Lower power consumption
- High heat pumping density
- Compatible with I-temp or C-temp operating ranges
- Application-specific designs available

End-Customer Applications
- Laser cooling for optical components and telecommunications
- 10G tunable lasers for DWDM (dense wavelength division multiplexing)
- Lasers for Passive Optical Network (PON) applications
- 10G EML (electro-absorption modulated lasers)
- 1550nm and 1577nm TO can lasers

Integration Options
- Bare wire bond pads
- Wire bonding posts
- Cold side electrical connections
- High-temperature solder
- Solder pre-tinning
- Patterned cold-side metallization
- Pre-attached cold-side thermistor
- Automation-ready packaging

Benefits:
- **Extremely Low Power Consumption**
 Achieve 30% lower power consumption than typical TEC performance
- **High Heat Pumping Density**
 Realize 60% higher heat pumping density in a very thin TEC - our pico-TEC platform is perfect for FTTx applications
- **Exceptional Design Support**
 Benefit from our expertise: we’ll consult with you, enabling faster time to market with a design done right the first time

Up to 30% Lower Power Consumption in a Small Package
<table>
<thead>
<tr>
<th>Part Number</th>
<th>TEC Dimensions</th>
<th>AC Resistance (Ω)</th>
<th>Optimum heat load (Watts)*</th>
<th>$Q_{C,\text{MAX}}$ [Watts]</th>
<th>DT_{MAX} [°C]</th>
<th>V_{MAX} [Volts]</th>
<th>I_{MAX} [Amps]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBM-009394</td>
<td></td>
<td>6.6</td>
<td>120 - 400</td>
<td>1.2</td>
<td>88</td>
<td>4.1</td>
<td>0.52</td>
</tr>
<tr>
<td>FBP-011632</td>
<td></td>
<td>1.6</td>
<td>190 - 630</td>
<td>1.9</td>
<td>85</td>
<td>2.6</td>
<td>1.3</td>
</tr>
<tr>
<td>FBM-012487</td>
<td></td>
<td>3.4</td>
<td>120 - 400</td>
<td>1.2</td>
<td>88</td>
<td>2.95</td>
<td>0.73</td>
</tr>
<tr>
<td>FBP-014038</td>
<td></td>
<td>2.4</td>
<td>160 - 560</td>
<td>1.6</td>
<td>84</td>
<td>2.9</td>
<td>1.0</td>
</tr>
<tr>
<td>FBP-013189</td>
<td></td>
<td>2.2</td>
<td>70 - 240</td>
<td>0.73</td>
<td>82</td>
<td>1.9</td>
<td>0.7</td>
</tr>
<tr>
<td>FBP-015289</td>
<td></td>
<td>0.85</td>
<td>100 - 300</td>
<td>0.96</td>
<td>87</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

*Optimal heat load is the cold side heat load range under which the TEC operates at or near highest efficiency conditions. Hot side temperature is 75°C; cold side temperature is 45°C to 55°C.