• Technical Conference:  30 March – 03 April 2025
  • Exhibition: 01 – 03 April 2025
  • Moscone Center, San Francisco, California, USA
PRESS RELEASE

06 March 2014

Contact:
Phyllis Dickerson Johnson University of Maryland 301.405.4491 phyllis@umd.edu Katie Caballero Fujitsu Network Communications, Inc. 972.479.2526 Katie.Caballero@us.fujitsu.com

MAX-Fujitsu Field Trial Successfully Records 400 Gbps and 800 Gbps Networking Speed, Reveals Bright Future for Terabit Networking Capabilities

COLLEGE PARK, MD (March 6, 2014) – Mid-Atlantic Crossroads (MAX), in conjunction with Fujitsu Network Communications, Inc., announced today the successful transmission of data at rates of 400 Gbps and 800 Gbps over MAX’s optical network from Baltimore, MD, to McLean, VA, during a field trial based in College Park, MD. The week-long trial, which is the first ever to demonstrate Fujitsu’s new super-channel capabilities on a deployed network, showed that MAX will be able to provide a 400 Gbps-capable networking infrastructure to the surrounding research and education (R&E) community, as well as blaze a future path to even higher speeds on the existing installed base of equipment.
 
This record-speed transmission was made possible by using the Fujitsu FLASHWAVE® 9500 Packet Optical Networking Platform (Packet ONP) to transmit data with a 25% improvement in channel spacing over conventional dense wavelength division multiplexing (DWDM).  These condensed channels are a result of flexible grid utilization and are combined with advanced modulation techniques including dual-polarization quadrature phase shift keying (DP-QPSK) and dual-polarization 16-ary quadrature amplitude modulation (DP-16QAM) to greatly increase network utilization without requiring any physical adjustments to the MAX network infrastructure.  The end result is a super-channel that allows more than 2.5 times increase in bandwidth in the same amount of spectral width as current DWDM technologies.  
 
The field trial focused on achieving a stable 400 Gbps transmission over the MAX network footprint, alongside existing 10 Gbps and 100 Gbps channels. After this was demonstrated, an error-free rate of 800 Gbps was also attempted and achieved during the test – indicating a wealth of possibilities for the current state of optical networking, while also shining a light on future networking capabilities.
 
“This field trial provided a significant opportunity for MAX and Fujitsu to collaborate on a leading technological advancement in the optical networking field,” said Tripti Sinha, Executive Director of MAX. “The achievement of such a fast networking speed will not only benefit MAX participants, but it will also set the standard for the future of advanced networking, helping to unlock previously unavailable resources for researchers across the world.”
 
This dramatic increase in network speed will allow MAX to provide its participants with even more robust and scalable network communication capabilities across Maryland, Virginia, and the District of Columbia. 400 Gbps will help scientists across the mid-Atlantic minimize the limitations of geographic distance and maximize the demands of science applications in order to expedite the transmission of data and, ultimately, discoveries through groundbreaking research.

“Fujitsu has established a track record of continuously evolving and expanding technology solutions to meet the most demanding networking requirements,” said Rod Naphan, CTO and Senior Vice President of Solutions, Product Planning and Portfolio Management, Fujitsu Network Communications. “Our collaboration with MAX is one example that we’re particularly proud of.  Today we’re achieving 400 Gbps, and we can already see greater capacity in the not-too-distant future.” 
 
The field trial demonstrated several key technical advancements which could lead to the next generation of optical transmission. Fujitsu’s 400 Gbps and 800 Gbps super-channel capabilities enable higher per-channel scalability. Support for multiple modulation schemes including DP-QPSK and DP-16QAM opens up the ability to optimize spectral efficiency while accommodating dynamically-changing reach demands. Additionally, Nyquist filtering techniques leverage spectral shaping resulting in an increase in spectral density. With nonlinear fiber impairments being a major limiting factor of optical transmission, the field trial demonstrated nonlinear compensation (NLC) techniques to reduce the resulting optical penalties and extend the achievable transmission distance. All of these advancements enable a much higher utilization of costly fiber infrastructure and maximize the bandwidth available for demanding R&E applications.
 
For more information about MAX and MAX services, please visit www.maxgigapop.net.
 
About the Mid-Atlantic Crossroads (MAX)
Mid-Atlantic Crossroads (MAX) is a multi-state regional network led by the University of Maryland. MAX owns and operates an all-optical, Layer 1 core network that is the foundation for a high-performance infrastructure providing state-of-the-art 100 Gbps network technology and services. MAX participants include universities, federal research labs, and other research-focused organizations in the Washington and Baltimore metropolitan areas. MAX serves as a connector and traffic aggregator to the Internet2 national backbone and peers with other major networks. Its mission is to provide cutting-edge network connectivity for its participants, tailored and generic data-transport solutions, and advanced services to accommodate and optimize large data flows, and to facilitate network and application research.
 
About Fujitsu
Fujitsu is the leading Japanese information and communication technology (ICT) company offering a full range of technology products, solutions and services. Approximately 170,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE: 6702) reported consolidated revenues of 4.4 trillion yen (US$47 billion) for the fiscal year ended March 31, 2013. For more information, please see http://www.fujitsu.com.
 
About Fujitsu Network Communications
Fujitsu Network Communications Inc., headquartered in Richardson, Texas, is a telecommunications solutions provider for Connection-Oriented Ethernet and optical transport technologies, with a broad portfolio of packet optical networking solutions, WDM and SONET. Fujitsu offers a broad portfolio of multivendor network services as well as end-to-end solutions for design, implementation, migration, support and management of optical networks. For seven consecutive years Fujitsu has been named the U.S. photonics patent leader, and is the only major optical networking vendor to manufacture its own equipment in North America. Fujitsu has over 500,000 network elements deployed by major North American carriers across the US, Canada, Europe, and Asia. For more information, please see: http://us.fujitsu.com/telecom.