OFC/NFOEC 2006 was a resounding success and confirmed its role as the premier international event for both the science and business of optical communications. More than 700 technical talks emphasized the innovative technologies emerging within the field and reiterated the conference's position as the preeminent event for optical communications. Business sessions, like Market Watch and the Service Provider Summit, spotlighted hot industry topics including IPTV, FTTx developments and network evolutions to standing-room only audiences. On-floor demonstrations showcased products at the forefront of our industry, and our exhibiting and sponsoring companies unveiled a host of new product and corporate announcements, including those from Bookham, Corning, JDSU, Opnext and others.

The conference is truly the must-attend global event for optical communications. Approximately 40% of the more than 600 participating companies came from outside the United States, with more than 80 companies attending from the hot Pacific Rim region. Additionally, 60% of technical talks were presented by engineers and scientists from outside the U.S. International attendance continues to grow for this event as well, with more than 55 countries represented and the field's leading minds from around the world in attendance.

Overall attendance for the conference was also quite strong, reaching 13,000 registrants. OFC/NFOEC realized technical registrations at nearly 3,000 and excellent floor traffic. In fact, on-site rebook was one of the strongest to date.

There was a real sense of an industry upswing this year and leading analyst reports were optimistic about what 2006 has in store for optical communications. Every indicator is showing that innovation is alive and well in the industry again.

OFC/NFOEC 2007 will certainly address these developments, new topics and more when it convenes in Anaheim March 25 - 29, 2007. We'll see you there!
OFC and NFOEC Abstracts

Tuesday, March 7, 2006

Wednesday, March 8, 2006

Thursday, March 9, 2006

Friday, March 10, 2006

Agenda of Sessions and Key to Authors and Presiders

Agenda of Sessions

Key to Authors and Presiders

Postdeadline Papers

Postdeadline Abstracts

OFC/NFOEC Technical Program Committee

OFC/NFOEC General Chairs
Patrick Iannone, AT&T Labs - Research, USA
Thomas Strasser, Nistica, Inc., USA

Program Chairs
Loudon Blair, Ciena Corp., USA
Joseph Ford, Univ. of California at San Diego, USA
Rolf Frantz, Consultant, USA

OFC Subcommittees

Category A – Fibers and Optical Propagation Effects
Ekaterina Golovchenko, Tyco Telecommunications, USA, Subcommittee Chair
Misha Brodsky, AT&T Labs - Research, USA
John Fini, OFS Labs, USA
Scott Hamilton, MIT, USA
Magnus Karlsson, Chalmers Univ. of Technology, Sweden
Satoki Kawanishi, NTT Innovation Labs, Japan
Pauli Kiiveri, Helsinki Univ. of Technology, Finland
Ming-Jun Li, Corning Inc., USA
Pavel Mamyshev, Mintera Corp., USA
Tanya Monro, Univ. of Adelaide, Australia

Category B – Amplifiers and Lasers: Fiber or Waveguide
Stojan Radic, Univ. of California at San Diego, USA, Subcommittee Chair
Dominique Bayart, Alcatel, France
Jake Bromage, Univ. of Rochester, USA
Colin McKinstrie, Bell Labs, Lucent Technologies, USA
John Minelly, Aculight Corp., USA
Shu Namiki, AIST Ctrl. Lab, Japan
Johan Nilsson, Southampton Univ., UK
Atul Srivastava, Bookham Technology, USA
Kohichi Tamura, Arasor Corp., Japan
Paul Wysocki, Lucent Technologies, USA

Category C – Signal Measurement, Distortion Compensating Devices and Sensors
David Weidman, Avanex Corp., USA, Subcommittee Chair
Misha Boroditsky, AT&T Labs - Research, USA
Kin Chiang, City Univ. of Hong Kong, Hong Kong
Brian Culshaw, Univ. of Strathclyde, UK
Mark Froggatt, Luna Technologies, USA
Brent Little, Little Optics Division, Nomadics, Inc., USA
Klaus Petermann, Technical Univ. Berlin, Germany
Paul Westbrook, OFS Labs, USA

Category D – Switching, Wavelength-Selective Filtering, and Routing Devices
Robert Norwood, Univ. of Arizona, USA, Subcommittee Chair
Roel Baets, Univ. of Ghent, Belgium
Paul Colbourne, JDS Uniphase Corp., Canada
G. Ronald Hadley, Sandia Natl. Labs, USA
Yoshinori Hibino, NTT Photonics Labs, Japan
Garo Khanarian, Rohm & Haas Co., USA
Haifeng Li, Tyco Telecommunications, USA
Dan Marom, The Hebrew Univ. of Jerusalem, Israel
Olav Solgaard, Stanford Univ., USA

Category E – Optoelectronic Devices
Gregory Fish, Agility Communications, Inc., USA, Subcommittee Chair
Heinz-Gunter Bach, Heinrich-Hertz Inst., Germany
Joe Campbell, Univ. of Texas at Austin, USA
Kirk Giboney, Inventor Partners, USA
Ken Morito, Fujitsu Labs, Japan
Ed Murphy, JDS Uniphase Corp., USA
Kristian Stubkjaer, Technical Univ. of Denmark, Denmark
Bart Verbeek, ASIP Inc., Netherlands
Osamu Wada, Kobe Univ., Japan
Hiroshi Yasaka, NTT, Japan

Category F – Digital Transmission Systems
Peter Krummrich, Siemens AG, Germany, Subcommittee Chair
Martin Birk, AT&T Labs - Research, USA
Jin-Xing Cai, Tyco Telecommunications, USA
Rene Essiambre, Bell Labs, Lucent Technologies, USA
Matthew Goodman, Telcordia Technologies, USA
Winfried Idler, Alcatel, Germany
Takashi Mizuochi, Mitsubishi Electric Corp., Japan
Itsuro Morita, KDDI R&D Labs, Japan
Torben Nielsen, Mahi Networks, Inc., USA
Harshad Sardesai, Ciena Corp., USA
Paul Townsend, Univ. College Cork, Ireland

Category G – Subsystems, Network Elements and Analog Systems
John Cartledge, Queen’s Univ., Canada, Subcommittee Chair
Giuseppe Bordogna, Nortel Networks Ltd., Canada
Michel Chbat, Siemens Communications, USA
Yun Chung, KAIST, South Korea
Ted Darcie, Univ. of Victoria, Canada
Steven Frisken, Engana Pty. Ltd., Australia
Herbert Haunstein, Univ. of Erlangen-Nurnberg, Germany
Rongqing Hui, Univ. of Kansas, USA
Rheinhold Ludwig, Heinrich-Hertz Inst., Germany
Dalma Novak, Pharad, USA
Masashi Usami, KDDI Labs, Japan

Category H – Networks
Paul Bonenfant, Morgan Keegan & Co., USA, Subcommittee Chair
Neophytos Antoniades, CUNY, USA
Stefano Baroni, SETECS Inc., USA
Calvin CK Chan, The Chinese Univ. of Hong Kong, Hong Kong
Ori Gerstel, Cisco Systems, Inc., USA
Wayne Grover, Univ. of Alberta, Canada
Biswa Nath Mukherjee, Univ. of California at Davis, USA
Michael O'Mahony, Univ. of Essex, UK
Chunming Qiao, SUNY, USA
John Wei, USA

Category I – Emerging Applications and Access Solutions
Kathy Tse, AT&T Labs, USA, Subcommittee Chair
Milorad Cvijetic, NEC Corp., USA
Hany Fahmy, BellSouth Telecommunications, USA
Hans-Martin Foisel, T-Systems Technology Ctr., Germany
Dave Johnson, BT Exact, UK
John Labourdette, Verizon, USA
Cedric Lam, OpVista Inc., USA
David Piehler, Harmonic Inc., USA
Raghu Ranganathan, Ciena Corp., USA
Glenn Wellbrock, MCI Inc., USA
Yong Xue, DISA, USA

NFOEC Subcommittees

Category 1 – Network Systems
Ann Von Lehman, Telcordia Technologies, USA, Subcommittee Chair
Mehran Esfandiari, SBC Communications, USA
Claudio Lima, Sprint Advanced Technology Labs, USA
Ramesh Nagarajan, Bell Labs, Lucent Technologies, USA
Petar Pepeljugoski, IBM Res., USA
Christoph Pfistner, NEOPhotonics, USA
Kenneth Stephens, BellSouth Telecommunications, USA

Category 2 – Network Technologies
Bert Basch, Verizon Labs, USA, Subcommittee Chair
David Chen, MCI Inc., USA
Louay Eldada, DuPont Photonics Technologies, USA
Andre Girard, EXFO, Canada
Jin Hong, Oplink Communications, USA
Rudi Schubert, Telcordia Technologies, USA
Thomas Wood, Bell Labs, Lucent Technologies, USA
Steering Committee

Category 2 – Network Technologies
Bert Basch, Verizon Labs, USA, Subcommittee Chair
David Chen, MCI Inc., USA
Louay Eldada, DuPont Photonics Technologies, USA
Andre Girard, EXFO, Canada
Jin Hong, Oplink Communications, USA
Rudi Schubert, Telcordia Technologies, USA
Thomas Wood, Bell Labs, Lucent Technologies, USA

IEEE/Lasers and Electro-Optics Society
Ronald Esman, Essex Corp., USA
George Harvey, Tyco Telecommunications, USA
Patrick Iannone, AT&T Labs - Research, USA
Bruce Nyman, Princeton Lightwave, USA

IEEE/Communications Society
Thomas Afferton, Northrup Grumman Corp., USA
Nim-Kwan Cheung, Telcordia Technologies, Inc., USA
Stewart Personick, USA
Adel Saleh, DARPA, USA

Optical Society of America
Douglas Baney, Agilent Labs, USA
Andrew Chraplyvy, Bell Labs, Lucent Technologies, USA
Robert Tkach, USA, Chair
John Zyskind, Optovia Corp., USA

Ex-Officio
Neal Bergano, Tyco Telecommunications, USA
Loudon Blair, Ciena Corp., USA
Mark Feuer, AT&T Labs - Research, USA
Joseph Ford, Univ. of California at San Diego, USA
Rolf Frantz, Consultant, USA
Lynn Nelson, OFS Labs, USA
Leo Spiekman, Alphion Corp., USA
Thomas Strasser, Nistica, Inc., USA
Invited Speakers

A. Fibers and Optical Propagation Effects

OTuA4, Fiber Designs for Reducing Stimulated Brillouin Scattering, Ming-Jun Li; Corning Inc., USA.
OTuH5, High Nonlinearity Bismuth Fibers and Their Applications, Tomohara Hasegawa; Asahi Glass, Japan, Japan.
OWA1, Single Polarization Fibers and Applications, Daniel Nolan; Corning Inc., USA.
OWA6, Polarization Properties of Photonic Crystal Fibers, Jes Broeng; Crystal Fiber, Denmark.
OWJ7, Propagation Effects at High Bit Rates, Alexei Pilipetskii; Tyco Telecommunications, USA.
OThH1, Towards Transmission Applications with Microstructured Fibers, Katsusuke Tajima; NTT, Japan.
OFC7, Reducing Losses in Photonic Crystal Fibres, Timothy Birks; Univ. of Bath, UK.
OFK3, Microstructured and Multicore Fibers and Fiber Lasers, Nasser Peyghambarian; Univ. of Arizona, USA.

B. Amplifiers and Lasers: Fiber or Waveguide

OTuD1, Waveguide Amplifier Design and Integration, Sergey Frolov; Inplane Photonics, USA.
OTuD6, Recent Progress of Self-Assembled Quantum Dot Optical Devices for Optical Telecommunication: Temperature-Insensitive 10 Gb/s Directly Modulated Lasers and 40 Gb/s Signal-Regenerative Amplifiers, Misturu Sugawara¹ ²; ¹Fujitsu Ltd., ²OITDA, Japan.
OWD7, Silicon Based Lasers and Amplifiers via Stimulated Raman Scattering, Haisheng Rong; Intel Corp., USA.
OWM1, High-Power Amplification of Ultrashort Pulses, Martin Ferman; IMRA America, USA.
OThC1, High-Coherency Fiber Lasers, Christine Spiegelberg; NP Photonics, USA.
OThJ7, High Power Single-Frequency Yb Doped Fiber Amplifiers, Yoonchan Jeong; Univ. of Southampton, UK.
OThQ1, Nonlinear Optical Devices Based on Carbon Nanotubes, Youichi Sakakibara; Natl. Inst. of Advanced Industrial Science & Technology, Japan.
OThQ2, Ultrashort-Cavity Passively Mode-Locked Fiber Lasers Using Carbon Nanotubes, Shinji Yamashita; Univ. of Tokyo, Japan.
OFH7, All-Optical Phase and Amplitude Regeneration of DPSK Signals Based on Phase-Sensitive Amplification, Guifang Li; CREOL, USA.

C. Signal Measurement, Distortion Compensating Devices and Sensors

OTuE1, Advances in SiGe ICs for 40G Signal Equalization, Hong Jiang; StrataLight Communications, USA.
OTuE5, Application of Digital Equalization in Optical Transmission Systems, Andreas Färbert; ADVA AG Optical Networking, Germany.
OTuL7, Distributed Strain Sensors Based on Brillouin Scattering for Structural Health Monitoring, Xiaoyi Bao; Physics Dept, Univ. of Ottawa, Canada.

OWE1, Optical Parallel Processing Approach to All-Order PMD Compensation, Andrew Weiner; Purdue Univ., USA.

OWE4, Effect of Nonlinearities on PMD System Degradations, Magnus Karlsson; Photonics Lab., Chalmers Univ. of Technology, Sweden.

OWN5, Monitoring Requirements for Optical Transparent Networks, Wolfgang Grupp; Acterna Germany, Germany.

OThE3, High Index Contrast Photonics Components for Optical Data Communication, Alfred Driessen; Univ. of Twente, The Netherlands.

OFF3, Fiber Bragg Grating Technologies and Applications in Sensors, Ian Bennion; Univ. of Aston, UK.

D. Switching, Wavelength-Selective Filtering and Routing Devices

OTuF3, Four-Degree Hub Switch Module Using Multi-Chip Planar Lightwave Circuit Integration Technology for Transparent ROADM Ring Interconnection, Takashi Goh; NTT Corp., Japan.

OTuM3, SOI Technology for Microring Tunable Filters, Fabrizio Giacometti; Pirelli Labs, Italy.

OThO3, Photonic Crystals for Communications: Stopping Light and Miniaturized Non-Reciprocal Devices, Shanhui Fan; Stanford Univ., USA.

OWF4, Replicated Polymer Waveguides for Optical Access Applications, Hayami Hosokawa; Omron Corp., Japan.

OWO3, Optical Waveguide Filters Using Nanophotonics, Thomas Mossberg; LightSmyth Technologies Inc, USA.

OWO5, Need-Oriented Waveguide Design Based on Wavefront Matching Method, Hiroshi Takahashi; NTT Photonics Labs, Japan.

OWV1, Recent Advances on Laser Processing in Silica-Based PLCs, Masaki Kohtoku; NTT Photonics Labs, Japan.

OThO4, Nanotechnology for Optical Networks, Edward Sargent; Univ. of Toronto, Canada.

OFP3, High Resolution Control of the Optical Phase for Code Empowered Networking, Shahab Etemad; Telcordia Technologies, USA.

E. Optoelectronic Devices

OWC1, High Performance InP-Based Optical Modulators, Takayuki Yamanaka; NTT Photonics Labs., Japan.

OWC6, Chirp Managed Laser (CML): A Compact Transmitter for Dispersion Tolerant 10Gb/s Networking Applications, Daniel Mahgerefteh; AZNA Corp., USA.

OWH3, Recent Advances in Si Photonics, Tom Koch; Lehigh Univ., USA.

OWH6, Components for Quantum Cryptography, Hugo Zbinden; Univ. of Geneva, Switzerland.

OWL5, Hybrid Integration of Access Modules Using Surface Mount Photonics, A. Benzoni; Xponent Photonics Inc, USA.

OThN1, The Physics Controlling the Sensitivity of Semiconductor Lasers to High
Temperatures, Alfred Adams; Univ. of Surrey, UK.
OThN5, Dilute Nitride Lasers and Photodetectors, James Harris; Stanford Univ., USA.
OFA3, Chip-to-Chip Optical Interconnects, Jeffrey Kash; IBM, T. J. Watson Res. Ctr., USA.
OFl1, PIN Photodiode Modules for 80 Gb/s and Beyond, Andreas Beling; Fraunhofer Inst. for Telecommunications, Heinrich-Hertz-Inst., Germany.

F. Digital Transmission Systems

OWB3, Electronic Dispersion Compensation by Signal Predistortion, Robert Killey; Univ. College London, UK.
OThD2, Low-Density Parity-Check Codes for 40 Gb/s Transmission, Bane Vasic; Arizona Univ., USA.
OThR1, Performance of Advanced Modulation Formats in Optically-Routed Networks, Gregory Raybon; Bell Labs, Lucent Technologies, USA.
OThR4, Coherent WDM: The Achievement of High Information Spectral Density through Phase Control within the Transmitter, Andrew Ellis; Univ. College Cork, Ireland.
OFD1, Dispersion Tolerant Alternative 10Gb/s Transmitters and Implications for WDM Optical Networking, Sethumadhavan Chandrasekhar; Bell Labs, Lucent Technologies, USA.
OFl1, Quantum Key Distribution for Reconfigurable Optical Networks, Robert Runser; Telcordia Technologies, USA.
OFl4, Design Trade-Offs for High PMD Routes in Installed Transmission Systems, Andre Hamel; France Telecom, France.

G. Subsystems, Network Elements and Analog Systems

OTu1, High-Rate Photon-Efficient Laser Communications with Near Single Photon/Bit Receiver Sensitivities, David Caplan; MIT, Lincoln Lab, USA.
OTu4, Coherent Detection of Phase-Shift Keying Signals Using Digital Carrier-Phase Estimation, Kazuro Kikuchi; Univ. of Tokyo, Japan.
OWG3, Subcarrier Multiplexed Signals: A Tool for Optical Fiber System Characterization, Mary Phillips; Northwestern Univ., USA. OWR5, Electronic Dispersion Compensation for Enhanced Optical Transmission, Fred Buchali; Alcatel, Germany.
OWW1, Transmitter Enabling Ultra-High Speed Transmission of Phase Modulated Data Signals up to 640 Gbit/s, Marcel Kroh; Fraunhofer Institute for Telecommunications, Germany.
OThl3, Optimum Modulation Format for High Density and/or Ultra Long Haul Transmission at 40Gbit/s, Gabriel Charlet; Alcatel Res. and Innovation, France.
OThP3, Polarization-Nulling Method for Monitoring OSNR in WDM Network, Yun Chung; KAIST, Republic of Korea.
OFB3, Photonic Signal Processing of High-Speed Signals, Robert Minasian; Univ. of
Sydney, Australia.

OFJ3, Petabit-per-Second Routers: Optical vs. Electronic Implementations, Rodney Tucker; *Univ. of Melbourne, Australia.*

H. Networks

OTuG1, Design of Multi-Tier Networks to Support Data-Intensive Applications, Scott Davidow; *Northrop Grumman, USA.*

OTuN3, Open Optical Networks, Vik Saxena; *Comcast, USA.*

OWP1, IRIS: Optical Switching Technologies for Scalable Data Networks, Martin Zirngibl; *Lucent Bell-Labs, USA.*

OWU1, Optical Networking Testbeds in Europe, Bernhard Fabianek; *European Commission, Belgium.*

OWU2, Optical Networking Testbeds in China, Jintong Lin; *Beijing Univ. of Posts and Telecoms, China.*

OWU3, Today's Optical Network Research Infrastructures for E-Science Applications, Gigi Karmous-Edward; *MCNC, USA.*

OWU4, Network Design for Large Data Flow, Kees Neggers; *SURFnet, The Netherlands.*

OThM7, Optical Networking in Non-Telecommunications Applications, David Levy; *General Dynamics, Advanced Information Systems, USA.*

OFO3, The European Network of Excellence e-Photon/ONe on Optical Networks, Fabio Neri; *Dept. di Elettronica, Politecnico di Torino, Italy.*

I. Emerging Applications and Access Solutions

OTuC3, Broadband Access Technology and Asia Market for FTTH and IP-DSLAM, James Mao; *UTStarcom, USA.*

OTuJ1, 10G-Enabled Optical Network Architecture Directions for Video, Voice and Data: An MSO Perspective, Robert Harris; *Time Warner Cable, USA.*

OWQ1, High-Bandwidth Biomedical, Telemedicine, and E-Earth Science Applications and Their Requirements on Optical Transport Networks, Albert Yee; *Calit2, Irvine Division, USA.*

OFE5, Field Trials with Channel Bit Rates of 160 Gbit/s, Ralph Leppla; *T-Systems, Germany.*

NFOEC Subcommittee 1: Network Systems

NThE1, Interoperability and Optical Network Performance, Vishnu Shukla; *Verizon, USA.*

NThG5, Modern HFC Networks -- More F, Less C, David Piehler; *Harmonic, Inc., USA.*

NThH1, Broadwing’s Experience with Optical Network Planning and Deployment, Michael Bortz; *Broadwing, USA.*

NFOEC Subcommittee 2: Network Technologies

NTuC1, Transmission of 40 Gbps Signals through Metropolitan Networks Engineered for 10 Gbps Signals, Jim Grzyb; *Tellabs, Inc., USA.*
NTuC3, Field Measurement of PMD Using Four Common Measurement Techniques, Osman Gebizlioglu; *Telcordia Technologies, USA.*

NTuD3, Optical Network Architecture Choice for Ethernet Services: A CLEC's View, Steve Plote; *Looking Glass Networks Inc, USA.*

NTuF4, Engineering and Planning Tool for an Ultra-Long-Haul Optical Mesh Transport System, Sydney Taegar; *Bell Labs, Lucent Technologies, USA.*

NTuF1, Progress in DWDM Deployment in MCI's North American Network, Daniel Peterson; *MCI, USA.*

NThC5, Systems Integration and Testing Challenges for Next-Generation Optical Transport Networks (NGOTNs), Muzaffer Kanaan; *Verizon Labs, USA.*

NThF5, New Optical Patch Panels and Optical Switches, T. J. Xia; *MCI, USA.*

Tutorial Speakers

A. Fibers and Optical Propagation Effects

OTuA1, Slow Light in Bulk Materials and Optical Fibers, Robert Boyd, *Univ. of Rochester, USA*

B. Amplifiers and Lasers: Fiber or Waveguide

OWT1, Fiber Parametric Amplifiers, Robert Jopson, Bell Labs, *Lucent Technologies, USA*

C. Signal Measurement, Distortion Compensating Devices and Sensors

OTHL1, Optical Compensation of System Impairments, Christopher Doerr, *Lucent Technologies, USA*

D. Switching, Wavelength-Selective Filtering and Routing Devices

OWF1, Polymer Waveguides: The Future is Now, Garo Khanarian, *Rohm & Haas, USA*

E. Optoelectronic Devices

OFI4, Recent Advances in Avalanche Photodiodes, Joe Campbell, *Univ. of Texas at Austin, USA*

F. Digital Transmission Systems

OTHD1, Modelling of WDM Terrestrial and Submarine Links for the Design of WDM Networks, Sebastien Bigo, *Alcatel, France*

G. Subsystems, Network Elements and Analog Systems

OWK1, Electronic Dispersion Compensation, Doug McGhan, *Nortel, Canada*

H. Networks

OTHt1, OCDMA, Jonathan Heritage, *Univ. of California at Davis, USA*

I. Emerging Applications and Access Solutions

OTHU5, Free Space Optical Networking, Charmain Gilbreath, *U.S. Naval Research Lab, USA*
Workshops

OFC/NFOEC workshops provide opportunities to discuss and debate the latest technologies. Many workshops will be highly interactive, among both the speakers and the audience. The format of each session is determined by the organizers. In the past, many workshops have consisted of a series of short, contributed presentations (5 to 10 minutes) from people involved in the field followed by a panel discussion driven by questions from the audience.

The 2006 conference featured workshops in current areas of interest in OFC and NFOEC categories alike. Details on all workshops are listed below.

A. Fibers and Optical Propagation Effects

OMD - Comparing Conventional and Microstructured Optical Fibers
Organizers: John Fini, OFS Labs, USA
Tanya Monro, Univ. of Adelaide, Australia

Microstructured optical fibers have captured the interest of the optics community because of their unique properties and their potential use in a wide variety of applications. This field is rapidly maturing and it is now timely to consider the following important questions for each application:

- How do the unique properties of microstructure fibers address the relevant requirements or performance tradeoffs of the application?
- Are conventional fibers or waveguides able to provide equivalent function to the proposed microstructure designs?
- Do microstructured waveguides provide qualitatively new functionality or advantages in the detailed system performance?

This workshop will explore the role that unique microstructure fiber capabilities can play in three the key application areas:

1. Transmission and laser power delivery
2. Nonlinear fibre devices
3. Amplifiers and lasers

Three invited speakers and a panel of 3 experts have been selected for each application area. The role of the panel is to engage in and stimulate discussion of the questions listed above with the
speakers and the audience. Both the invited speakers and panellists are leaders in their field chosen to provide good coverage of the application area.

B. Amplifiers and Lasers: Fiber or Waveguide

OMB - The Future of SOAs
Organizers: Juerg Leuthold, Univ. of Karlsruhe, Germany
Niloy K. Dutta, Univ. of Connecticut, USA

Semiconductor Optical Amplifiers (SOAs) have been a topic of intense research for over twenty years. Although SOAs have lower saturation powers than fiber amplifiers, they are most unique because they cover the whole spectral range from 1300 to 1600 nm with sufficient gain for most access and medium-haul applications. A recent router introduced by startup Infinera clearly exploits SOAs not only to boost signal power but also demonstrates the benefit from the monolithic integration of SOAs with other InP based devices. The high nonlinearity of SOA is most unique among all known optical materials – it has led to the development of a new class of commercially available nonlinear all-optical products.

This includes wavelength converters and optical clock recoveries and soon might include optical high-speed demultiplexers and many other all-optical processing applications in view of label swapping, optical header recognition and optical switching applications. Recently, SOAs have found new applications for FTTx and non-telecommunications fields, which has triggered a new interest in the technology.

After a short introduction on the theory and concepts behind SOAs including new materials such as Quantum Dots, we will discuss recent trends in industries and highlight new applications not only in the field of telecommunications but also in the field of medicine and related fields.

Invited Speakers include:
K. Morito, Fujitsu Labs Ltd., Japan
B. Sartorius, HHI, Germany
D. Bimberg, Tech. Univ. of Berlin, Germany
L. Zhang, Lucent Tech., USA
L. Tongnin LI, INPHENIX, USA
S. Tsdaka, Kailight Israel
B. Stefanov, Alphion Corp., Director of Product Development, USA
T. A. Fujitsu, Optical Semiconductor Device Res. Lab, Fujitsu Labs Ltd., Japan
J. Zyskind, Optovia, USA
P. Heim, Vice President of Advanced Technology, COVEGA Corp., USA
A. Poustie, CIP, UK
C. Signal Measurement, Distortion Compensating Devices and Sensors

OMA - Optical vs. Electrical Approaches to Compensation of Signal Degradations in High Speed Optical Networks
Organizers: Kim Roberts, Nortel Networks, Canada
Paul Westbrook, OFS Labs, USA

Optical signal compensation, most importantly dispersion compensating fiber, has enabled today’s high speed 10Gbit/s networks. Much research has also been devoted to 40Gbit/s optical compensation technologies, such as tunable dispersion compensators, PMD compensators and even optical equalizers. However, at lower bit rates, particularly in wireless communication, electrical compensation of signal degradations is well established. With advances in high speed electronics, these methods are now being tested in 10G and even 40G optical communication systems and recent laboratory demonstrations have shown that electrical precompensation may enable even long haul 10G transmission without any optical dispersion compensation.

How far can electronic approaches go in high speed optical networks to replace or coexist with optical technologies? Our workshop will examine this issue with participation from electrical and optical component vendors and system designers.

Invited Speakers include:
Martin Birk, AT&T Res. Labs, USA
M. Bohn, Siemens, Germany
Hans Damsgaard, OFS Fitel Denmark I/S, Denmark
Rene-Jean Essiambre and Peter Winzer, Lucent Technologies, Bell Labs, USA
Chris Fludger, CoreOptics, UK
Martin Guy, TeraXion, Inc., Canada
Kim Roberts, Nortel Networks Ltd., Canada
Ross Saunders, Stratalight, USA
Dave Weidman, Avanex Corp., USA

D. Switching, Wavelength-Selective Filtering and Routing Devices

OMC - Low-Cost ROADM: Wavelength Switching vs Tunable Filters
Organizers: Haifeng Li, Tyco Telecommunications, USA
Dan Marom, The Hebrew Univ. of Jerusalem, Israel

Reconfigurable optical add/drop multiplexer (ROADM) technology enables remote traffic provisioning at the wavelength level in network nodes. This capability allows the network operator to increase system efficiency and reduce operating expenses. However ROADM deployment is limited due to its initial costs, hence the drive to reduce cost for ROADM implementations. Under the scope of this workshop, we focus on two general technology categories: 1) The simple, but functionally limited, single-channel ROADM, based on tunable filters; and 2) the more expansive and expensive, wavelength-selective switches. At the
workshop, users of the ROADM modules like system integrators and equipment vendors will first present their requirements and willingness of performance and economic trade-offs. Subsequently, the technology developers and innovators will demonstrate and fit their unique product against different applications, followed by Q&A session to the panelists from the audience. The goal of the workshop is not to find the best all-around technology for ROADM, but rather to explore the full potential of each technology to different applications in terms of performance and cost.

E. Optoelectronic Devices

OMH - Integrated Optics in InP: Technology and Economics

Organizers: Yoshiaki Nakano, The Univ. of Tokyo, Japan

Rajeev Ram, MIT, USA

Integrated Photonics based on InP materials has been a promising technology for more than a decade, with impressive demonstrations of multifunctional components on a single chip. The ability to integrate active and passive optical components on a single substrate for the optical window suitable for data- and telecommunications has opened a variety of applications. In the recent past one challenge was the design of high performance subcomponents such as low loss waveguides with optical filters, efficient and high speed optical sources and detectors, with all of these components having polarisation- and wavelength control. A further challenge was the realisation of uniform and high yield processes that would ensure the required cost reduction of integrated optical devices. With the development of proven software models for both passive and active subcomponents, and the recent establishment of focussed InP foundries with controlled process capabilities, Integrated Photonics has taken a giant step from the research playground towards industrialization. At the same time, the FTTx mass market is emerging to provide a boost in the economics of Integrated Photonics products by stimulating the same combination of high volume, high performance and low cost that drove the early days of electronic integrated circuits.

This workshop will address the technology and economics of Integrated Photonics Products for the optical telecom- and data communication and sensor markets. Companies and research institutes are invited to share their views. In addition, companies that have adopted a business model based on fabless operation are solicited to share their experiences. New concepts for integration will be discussed as well as recent trends in applications that are viable candidates for integration technology that have been applied successfully.

F. Digital Transmission Systems

OMG - Design and Planning Tools for WDM Systems and Networks

Organizers: Michael Frankel, Ciena Corp., USA

Ekaterina Golovchenko, Tyco Telecommunications, USA

Stephen Gringeri, Verizon, USA
Carriers are continuing to experience pressure to reduce both capital and operating costs of fiber-optic communication networks. Design and Planning tools have a critical role to play in optimizing configurations for providing low start up cost, scalability and efficient maintenance and operation, as well as the exploration of the upgrade potential of the legacy systems and networks. The workshop plans to cover issues related to the development and applications of such tools. Areas of focus may include tradeoffs in adaptability to either new network deployments or extensions of existing networks, computational accuracy vs. memory and run times, beneficial levels of coupling among service demands, wavelength provisioning, physical transport layers and protection mechanisms. The other subject of interest is integrated planning approach across WDM and TDM domains, as well as integrating planning around across multiple equipment vendors. The workshop format will consist of several contributed and invited presentations, followed by a panel discussion.

Invited Speakers include:
Roman Egorov, Verizon, USA
Ralph Leppa and Andreas Gladisch, T-Nova Deutsche Telekom Innovationsgesellschaft, Germany
Matthew Ma, VSNL International, USA
Dmitriy Kovsh, Tyco Telecommunications, USA
Loukas Paraschis, Cisco Systems, Inc., USA
Enrico Ghillino, RSoft Design Group, USA
Yun Feng Shen and Harshad Sardesai, Ciena Corp., USA
Jan Spaeth, Ericsson, Germany
Peter Winzer, Lucent Technologies, Bell Labs, USA

H. Networks

OMF - Next Generation Optical Networking Applications, Architecture and Technologies
Organizer: Adel Saleh, DARPA/ATO, USA

As the telecom industry turns around, it is an opportune time to explore the applications, architectures and technologies of next-generation optical networks. In this workshop, experts and decision makers from the commercial, academic, and government sectors will present their visions for the evolution of the network. The panel will discuss evolving advanced optical networking applications and the associated network requirements. They will address the benefits and limitations of today's networks, and examine what new architectures and technologies are needed to enable the next-generation network. An open discussion session will follow the panel presentations, where audience participation is greatly encouraged.

Panelists:
Dr. Henry Dardy, DoD Senior Technologist and Navy Chief Scientist for Advanced Computation and Communications at the Naval Res. Lab
Dr. Larry Smarr, Professor of Computer Science and Engineering, and Founding Director of CalIT2, Univ. of California, San Diego
Dr. Stuart Elby, Vice President, Network Architecture and Enterprise Technologies, Verizon
Depictions of broadband access infrastructures have been speeded up by applications such as video on demand, Internet gaming, peer-to-peer downloading etc. To avoid being left out in the fast-growing video, voice and broadband data triple play, RBOCs in the US are rolling out ATM-PON (APON) based FTTP systems to compete with MSOs who are leveraging their existing HFC infrastructure. At the same time, the Japanese seems to be charging forward with Ethernet PONs (EPON) and the Koreans are experimenting with WDM-PONs.

Since it was first captured in the Full Service Access Network (FSAN) standard, different flavors of PON technologies have been proposed. APONs based on the ITU-T G.983 and G.984 guidelines give them the advantage of available well-defined ATM QoS support. At the same time, EPON adopters are betting on Ethernet cost efficiency, ubiquity and proven compatibility. Some carriers also make use of the huge bandwidth in optical fibers by overlaying services such as legacy analog video on their PON fibers with coarse WDM.

The following bullets give a non-exhaustive list of interplaying factors that will affect a network service provider’s choice of a particular PON technology:

- Capital cost
- Capacity limit
- SLA and QoS support
- Compatibility and integration with legacy local and backbone infrastructure
- Technical staff know-how
- Ease of deployment, operation and management
- Technology trend and growth potential
- Regulations, government policies and strategic considerations

In this workshop, we will invite industry experts from different parts of the world to review and discuss the drivers and trade-off considerations in the choice of PON technologies for their territory.
NFOEC WORKSHOPS

1. Network Systems

NMB - Optical Performance Monitoring: What Are the Possibilities and What Do Carriers Need?

Organizer: Ron Skoog, Telcordia, USA

Optical Performance Monitoring (OPM) is essential for the operation of all-optical portions of transport networks. Today we have ultra-long-haul systems forming significant all-optical network segments; looking to the future, networks will utilize all-optical switching to form more expansive all-optical sub-networks. With these developments there will be an increasing need for economic optical monitoring that can identify and isolate degradations and failures in all-optical sub-networks. This workshop will provide perspectives from carriers, equipment vendors and researchers on today’s OPM capabilities, what carriers will need and what the possibilities are for tomorrow. The planned format will consist of contributed presentations, followed by a panel session. Interested presenters should contact the organizer.

Invited Speakers include:
Vishnu Shukla, Verizon, USA
Martin Birk, AT&T Labs Res., USA
Dan Kilper, Bell Labs, Lucent Technologies, USA
Yun Chung, Dept. of Elect. Engineering, KAIST, Korea
Bengt-Erik Olsson, Chalmers Univ. of Technology, Sweden

Vendor Contributions:
Mark Lourie, Aegis Semiconductor, Inc., USA
David Menashe, RedC Optical Networking Ltd., USA

2. Network Technologies

NMA - OC-768: When/How/Where? Drivers and Challenges in Deploying a Network to Support OC-768

Organizer: Gary Nicholl, Cisco, Canada

With the introduction last year of 40 Gb/s interfaces on the next generation of core routers, the industry has seen a steady uptake in interest on 40 Gb/s networking technology. Several service providers have announced both 40 Gb/s field trials and limited deployment over the past year. Advances in component technology have allowed not only improvements in reliability and performance, but also extremely aggressive cost points, however, there are still some challenges ahead. The desire to support seamless transitions from 10 Gb/s transport solutions to 40 Gb/s adds some issues, such as OSNR performance, tolerance to chromatic and polarization-mode dispersion, which must be overcome before 40Gb/s is ready for wide scale deployment.

In this workshop a panel of industry experts, from both service providers and equipment manufacturers, will review the current state of 40 Gb/s technology, the technical and business...
challenges, and discuss what it will take for 40 Gb/s to become a widely deployed networking technology.

Invited Speakers include:
Ross Saunders, *Stratalight, USA*
Steve Penticost, *Mintera, USA*
Joerg-Peter Elbers, *Ericsson, Germany*
Michel P. Belanger, *Nortel, Canada*
Ralph Leppla, *Deutsch Telecom, Germany*
Li Xing, *CERNET, China*
Vik Saxena, *Comcast, USA*
Daniel L. Peterson, *Verizon, USA*
Joseph Stewart, *Cisco, USA*

Market Watch

This three-day series of panel sessions engages the applications and business communities in the field of optical communications. Presentations and panel discussions feature esteemed guest speakers from industry, research, and the investment community. A special session featured on Thursday highlighted Video over IP.

Tuesday, March 7, 2006

Business and Management Insights
12:00 p.m.-2:00 p.m.
Moderator: Milton Chang, *Managing Director, Incubic, LLC, USA*

New broadband opportunities will see competition from both cable and telecom service providers, while systems providers and IT businesses in general must pay attention to globalization and international markets. This session features leaders from the global private equity, cable systems, and telecommunication technology sectors, sharing insights that cover a spectrum of issues highly relevant to everyone presently in our industry.

Dr. Henry Kressel, Partner and Senior Managing Director of Warburg Pincus, a global private equity investment firm that participated in the recent purchase of Telcordia, will address IT and communications business opportunities both in the United States and overseas from an investor viewpoint. Karl May, President and CEO of OpVista, a optical transport company presently supplying the major cable companies, will discuss the business environment and opportunities for serving the cable industry and CLECs, and will also share his insights on business development. Dr. Rod Alferness, Senior Vice President, Optical Networking and Photonics Research of Lucent, Bell Laboratories, recipient of the 2005 IEEE Photonics Award, will describe trends in optical network technologies.

Speakers
Innovation - the Engine of Global Broadband Networks
Rod Alferness, Senior Vice President, Bell Labs Res., Lucent Technologies, USA

Global Communications Services
Henry Kressel, Partner and Senior Managing Director, Warburg Pincus LLC, USA

Building the Broadband Connected Community
Karl May, President and Chief Executive Officer, OpVista, USA

Drivers for an Optical Re-Emergence
3:00 p.m.-5:00 p.m.
Moderator: Serge Melle, Vice President, Network Architecture, Infinera Corp., USA

The past year has seen the announcement and implementation of several major network overbuild initiatives geared towards wide-spread roll-out of broadband services, migration to IP-based networking, and wireless and wireless network and service convergence. In many cases these initiatives are having a significant impact on the underlying optical network infrastructure, or in the case of FTTX/PON initiatives, are an inherent part of it. This session will feature speakers providing a macro view of key initiatives, service drivers, resulting investment in new optical network infrastructures, and the resulting impact on the technology and vendor landscape.

Speakers

Network rEvolution in North America: The Expanding Role of Optics
Ronald J. Kline, Research Director, Optical Networks: North America, Ovum, USA

Wireline Resurrection: The New Optical Networking Agenda
Stéphane Téral, Directing Analyst, Service Provider Next Gen Voice and Mobile Core, Infonetics Research, Inc.

Beyond the Internet: Emerging Bandwidth Drivers
Stuart Elby, Vice President, Network Architecture, Verizon Network Services Group, USA

Optical Networking: A View from Wall Street
Paul Silverstein, Director, Equity Research, Credit Suisse, USA

Wednesday, March 8, 2006

Collapsing Layers and Technologies: How New Service Offerings Are Driving the Evolution of the Optical Communication Networks
2:00 p.m.-4:00 p.m.
Moderator: Alan Gibbemeyer, General Manager, Siemens Communications, Inc., USA

In recent years there has been a clear trend to collapse different optical network layers. The core, regional, metro, and access layers are being consolidated in one optical multi-haul platform, while an approach integrating the physical, SONET, switching, and routing layers is desired in
the marketplace. These are disruptive approaches with long lasting impact on how we view the market and its segments, and how we build the network. This session will explore the commercial and technical benefits and challenges of such integrated technologies for the carrier, system supplier and component maker.

Speakers

Network Layer Convergence from the Residential to the Core
Hans-Juergen Schmidtke, *Vice President of Product Management Access and Transport, Siemens Communications Inc., USA*

Migrating to a Packet Over DWDM Network
Thomas Scheibe, *Manager Product Management, TMG, Cisco Systems, USA*

How Paths Collide: Network Layer and Technology Collapse Create New Opportunities and Threats
Dana Cooperson, *Vice President, Optical Networks, Ovum-RHK, USA*

The Role of SONET in an Ethernet-Centric World
Andre Fuetsch, *Vice President Enterprise Product and Platform Integration, AT&T Inc., USA*

Automation and Integration Are Key To Building Next Generation Networks!
Glenn Wellbrock, *Director of Network Technology Development, MCI Communications, USA*

Thursday, March 9, 2006

Special Session: IP Video and Its Many Implications
9:00 a.m.-10:00 a.m.
Featuring: Tony Werner, *Senior Vice President and Chief Technology Officer, Liberty Global, Inc., USA*

Just like most communications, video is also finding its way to IP networks. This transition creates opportunities and threats to every element of the value chain. This talk will highlight some of the early challenges as well as the long term implications of Video over IP. The discussion will include the impact of exponential increases in storage density, computational capacity and access bandwidth. The speaker will also provide his thoughts on evolving business models, portable media and the topic of disintermediation.

State of the Industry: A Wall Street / Investor Perspective
11:00 a.m.-1:00 p.m.
Moderator: Paul Bonenfant, *Associate Vice President, Equity Research, Morgan Keegan & Co., USA*

After years of decline, telco capex spending is predicted to approach double-digit year-over-year growth in 2005, with spending into 2006 focused on broadband access/FTTx, wireless, and carrier-grade Ethernet initiatives. This session will provide Wall Street and Investor perspectives
on potential beneficiaries, from established players to emerging start-ups, with a view toward what the future might hold for the telecommunications industry.

Speakers

Arms Merchants to the Civil War
Simon Leopold, Senior Vice President, Equity Analyst, Morgan Keegan & Co., USA

An Investment Banking Perspective - IPOs, Financings and M&A
Gary Kirkham, Managing Director, Global Co-Head of Communications Equipment Group, Merrill Lynch & Co., USA

Venture Capital Trends In The Communications and Optical Sectors
Chris Rust, Managing Member, U.S. Venture Partners, USA

Voice as an Afterthought
Cliff Higgerson, Venture Capital Advisor, CHVentures, USA

Panel Discussions

Panel Sessions provide interactive discussions focused on topics of interest to the industry.

Thursday, March 09, 2006
8:00 am - 10:00 am
Room 303 C

JThA - Reconfigurable Networks: Challenges and Opportunities
Steve Frisken; Engana Pty, Ltd., Australia

This combined OFC/NFOEC workshop brings together key players who are enabling the next generation of agile or reconfigurable optical networks. This "vertically integrated" session examines the issues and opportunities from the perspective of the Telecom providers, Network Equipment Manufacturers, Subsystems and Technology developers. Presentations and panel discussions define the focus of current developments and deployments and give a view on the potential evolution of this very dynamic area of telecommunications. The panel discusses the commercial drivers of reconfigurability and look at what functionalities and network topologies are being developed to meet the requirements. Specific themes will include monitoring, protection, cascadability, level of transparency and technologies of choice.

Wednesday, March 08, 2006
4:00 pm - 6:00 pm
Room 303 C
NWE - Riding the Wave of Silicon Economics: Is the Wave Reaching Shore?
Altera, USA; LSI, USA; Turin Networks, USA; Netgear, USA

In the past, smaller geometries, larger wafers and integration into silicon all drove the performance and cost of network components and systems. These same traits continue to drive Silicon Economics for very high volume consumer and networking applications. However, foundry costs and the cost of EDA tools may severely limit future generations of merchant silicon and ASICs, except for the highest volume applications. The panelists will discuss their visions and solutions to these issues.

Speakers Include:

Mathew Steinberg, Ample Communications, USA
Jim Jungjohann, CIBC World Markets Corp., USA
Denny Scharf, LSI Logic, USA
Steve West, Packet Switch Networks, USA
Anthony Torza, Xilinx, USA

Tuesday, March 07, 2006 2:00 pm - 4:00 pm
Room 303 C

NTuB - Ethernet's Real Deal: A Discussion of Service Providers' Real-World Experiences Developing, Managing, and Delivering Ethernet Services
Umesh Kukreja; Atrica Inc., USA

Service providers of all types are developing creative Ethernet service strategies, and they are having to address a host of issues from the business strategy, technical, competitive, and financial perspectives. Issues such as service definition, competitive positioning, target marketing, infrastructure choices, and service management must be considered, as well as customizing offerings to best fit their customers. This panel will deliver 'Real World' case studies from service providers that have rolled out Ethernet service offerings, highlighting the issues, challenges, and rewards they have experienced. Attendees will leave with a clearer understanding of their options for pursuing and deploying successful Ethernet services offerings.

Session Chair: Umesh Kukreja, Director of Product Marketing, Atrica Inc., USA
Panelist 1: Michael Howard, Principal Analyst and Co-Founder, USA
Panelist 2: Gary George, President, IP Networks, USA
Panelist 3: Andy Redman, Senior Network Engineer, Cox Communications, USA
Panelist 4: John Galgay, OmniTech Advisors, Inc., USA

Wednesday, March 08, 2006 1:30 pm - 3:30 pm
Room 303 C
Much progress has been made in the effective control of optical systems and networks, and applications such as grid computing are developing architectures and middleware needing reconfigurable gigabit reconfigurability. However there are "seam" issues between the players that need to be solved if reconfigurable optical networking is to take off. This panel discussion will bring together architects from equipment manufacturers, carriers, standards groups, and applications to discuss the status and prognosis for solving these "seam" issues.

Speakers Include:

Physical Layer Control in Optical Transport Systems, Michael Eiselt, ADVA AG Optical Networking, USA
Optical Network Control for Multi-Layer Transport, Lyndon Ong* and Rajender Razdan, Ciena Corp., USA
Multi-Layer Restoration Architecture in IP Over Optical, Angela Chiu* and John Strand, AT&T, USA
Integration and Control of IP and Intelligent Optical Backbone Network, Yong Xue* and David Mihelcic, DISA, USA
Rethinking Intelligent Optical Control Planes for Grid Computing, Gigi Karmous-Edwards, MCNC, USA
Grid Optical Network Service Architecture for Data Intensive Applications, Tal Lavian*, Nortel, Canada, Randy Katz, Univ. of California, USA and John Strand, AT&T, USA

Thursday, March 09, 2006 10:30 am - 12:30 pm
Room 303 C

NThD - Emerging Networks
Shahab Etemad¹, Mehran Esfandiari², Roberta Rentko¹ ; ¹Telcordia Technologies, USA , ² SBC, USA

This panel discussion on "Emerging Networks" addresses the following:

- FTTx networks that carry video, data and voice to the end customer: the traditional carriers which provide voice and data to the end customer are building networks in the last access miles to provide video services to compete with the cable companies;
- Video backbone networks (both metro and long-distance) that provide broadcast, VoD (Video on Demand), and other video services to the local markets, to connect to FTTx and other access architectures;
• Converged backbone networks that combine layer 1, 2, and 3 network elements and applications which will enable new video services, a multitude of new data services, and IP services (VoIP, etc.) to be carried on same network; and
• Reconfigurable scaleable networks that support ultrahigh aggregate bandwidth for dual government-commercial use.

Speakers include:

Andreas Gladisch, Telcordia Technologies, USA
Deutsche Telekom, Telcordia Technologies, USA
Germany
Ken Kerpez, Telcordia Technologies, USA
John Ryan, Adventis, USA
Glenn Wellbrock, Verizon, USA

Tuesday, March 07, 2006 4:30 pm - 6:30 pm
Room 303 C

NTuE - Fiber-to-the-X Deployment Issues
Vincent O'Byrne; Verizon, USA

Over the last several years various Telecommunication and Cable Television companies across the world have deployed fiber further and further into the network in order to offer the customer a triple-play solution (POTS, Data and Video). Companies have chosen different technologies to deploy from FTTP, FTTN and others to meet these demands. This Panel will discuss the various options that the companies chose, their rationale, lessons learned and where they see their Network going over the coming years to meet the ever increasing customer need and competition from other broadband companies.

Speakers Include:

Hiromichi Shinohara, Director of NTT's Access Network Service Systems Labs, Japan
Glenn Mahony, MTS, BellSouth Telecommunications, USA
Gene Edmon, Executive Director, AT&T Labs, USA
Vincent O'Byrne, Director of Technology, Verizon, USA

Plenary Session
The OFC/NFOEC 2006 Plenary Session was held on Tuesday, March 7 in the Marquis Ballroom of the Anaheim Marriott Hotel.

Bran Ferren
Chief Creative Officer
Applied Minds, Inc., USA
Optical Fiber Communications - What's Next?

Abstract: In 1997, Bran Ferren addressed OFC, providing a series of industry predictions resulting in one of the most refreshing, realistic and accurate Plenary Sessions in OFC’s history. In this year’s OFC/NFOEC Plenary Session, Ferren provides a fresh look at our industry, including drivers for applications as well as the globalization and commodization of the communications industry.

Bran Ferren speaks from unique experience on the art and science of the imagination, and how to organize for innovation. He is a dynamic and inspiring speaker with unparalleled knowledge and insight into the ways invention and innovation, creativity and technology interact for business success. Ferren fills his presentations with ideas gleaned from his vision of design and technology's future, and he offers concrete ways to redesign innovation processes that come from his experience as one of our finest innovation practitioners.

Equal parts artist/designer and scientist/engineer, he has a distinguished career of contribution to business and product development, film and entertainment, aerospace and other sciences, winning many awards, including three Academy Awards for technical achievement. He is the co-founder, Co-Chairman and Chief Creative Officer of Applied Minds, a company that provides advanced technology, creative design, and consulting services to a variety of clients, including The Walt Disney Company, NASA and GM. Before founding Applied Minds, Ferren held various leadership positions, including president, at Walt Disney Imagineering, a resource for new technology invention and creative input for the entire company.

Henry J. Kafka
Chief Architect
BellSouth Corporation, USA

Drivers for Next Generation Networks

Abstract: Hurricane Katrina presented BellSouth with an unprecedented challenge in New Orleans as the levee system failed and approximately 80% of the city flooded. Restoration of the metro network provided new perspectives on opportunities for advanced technologies. Upcoming changes in video communications and entertainment services may provide an unprecedented challenge for existing networks, as consumer demands shift from linear programs to an explosion of content delivered wherever and whenever the customer wants it. Meeting these challenges will require advances in the costs, capabilities, and management of metro access and core networks.

Henry J. "Hank" Kafka has over 20 years of experience in telecommunications. He started his career in the equipment provider part of the industry, working for Bell Labs on projects involving voice, data, and multimedia communications systems and applications. He then moved to become a large business customer of communications services and products, working for Johnson Controls in the IT organization, Having been both a supplier to BellSouth and a
customer of BellSouth, Kafka joined BellSouth's Science and Technology organization in 1997. He has been working towards the transformation of BellSouth's network to a converged data-centric architecture, setting directions for the introduction of hardware, software, and service technologies such as xDSL, fiber to the premises, optical networking, metro ethernet, MPLS, network-based VPNs, wireless broadband access, packet voice, video, wireless/wireline integrated services, and home networking.

Kafka has a Bachelor of Science degree in Electrical Engineering from Northwestern University and a Master of Science degree in Electrical Engineering from the University of Illinois at Urbana-Champaign.

G. Keith Cambron
Senior Vice President
AT&T Labs, USA

The Multimedia Transformation

Abstract: 2006 is the year multimedia services begin transforming our optical networks. IMS and IPTV place demands on long haul, metropolitan and distribution networks that spur the advance of ROADM, long haul and PON technologies. In this talk I will touch upon these technologies, and how they enable the next generation of multimedia services.

Keith Cambron is Sr. Vice President of AT&T Labs, AT&T's applied research and development subsidiary. He has a broad range of knowledge in telecommunications networks, technology and design, and experience ranging from circuit board and software design to the implementation of large public networks. His expertise extends to the areas of switching, call processing, line and trunk signaling, SS7, VF and RF transmission, system testing, Telco operations and traffic engineering, network reliability and performance analysis. Before the recent merger with AT&T, Cambron served as the President & CEO of SBC Laboratories, Inc. This role enabled him to bridge the innovation in the labs to bottom-line results for SBC companies.

Cambron has been profiled in Telephony and America's Network, and was published in the Proceedings of the IEEE Community Network Conference of 1992 and 1995. He taught Object Oriented Design at Golden Gate University in San Francisco and is a Senior Member of the Institute of Electrical and Electronics Engineers (IEEE). He received his B.S.E.E. from the University of Missouri, M.S. in Systems Management from the University of Southern California, and a Microsoft Windows Programming Certification from the University of California at Berkeley. Cambron is a retired Commander in the United States Naval Reserve.
Service Provider Summit

The Service Provider Summit is a dynamic program with topics and speakers of interest to CTOs, network architects, network designers and technologists within the service provider and carrier sector. The program includes panel discussions, keynote presentations, exhibit time, and networking time.

Keynote Presentation

AT&T's Network Revolution: Building for Tomorrow
Chris Rice, Executive Vice President, Network Planning & Engineering, AT&T, Inc., USA

New, advanced technologies are ushering in a new era of communications. In the years ahead, the network will look completely different than it does today. AT&T will share its vision for the network of the future, providing an all-encompassing view of where the network is heading and what the revolution means for the communications industry and customers.

As Executive Vice President, Chris Rice oversees the Network Planning and Engineering Group for the new AT&T Inc. His responsibilities also include overseeing the development and deployment of advanced access, switching, and routing technologies for the company. Prior to being appointed to his current position in March 2004, he was responsible for SBC Communications' enterprise-wide technology direction, new technology introduction, platform development and network regulatory.

Previously, Mr. Rice served as Vice President-Network Engineering, where he was responsible for all current planning and engineering for SBC Southwest and SBC SNET. Prior to that, he was Vice President-Network Planning and engineering for SBC Internet Services, where he was responsible for all network planning, engineering, systems and operations. Since joining the company he has also held a variety of other management positions in network operations, network engineering, network planning, project management and outside plant operations.

Mr. Rice began his career in 1980 with Southwestern Bell Telephone in toll switching systems network operations. In 1986 he joined Bell Communications Research ("Bellcore"), where he had responsibility for the support and systems analysis of operational support systems. In 1994 he held the position of Vice President-Network Planning and Engineering for Southwestern Bell Messaging Inc., where he was responsible for network operations, network planning and engineering, and information systems.

In 1989 he received the Texas Synergy Award for the Interdepartmental Showcase. In 1990 he received the Texas Synergy Award for Addison 1 AESS to DMS-100 Conversion. Mr. Rice received a B.S. in Engineering Technology in 1980 from Texas A&M University in College Station, Texas.
Panel Discussions

Panel I: The Future of Metro and Core Networks
Moderator: Brad Kummer, CTO, Cogent Technologies, USA

For decades telecom networks were designed to carry voice traffic, while data traffic was mostly limited to enterprise networks. Each network design had its respective set of requirements for quality of service, capacity, survivability and restoration.

However, in recent years the communications industry has gone through fundamental changes: revenue generated through conventional voice services is rapidly diminishing, and ever more complex data and video services are delivered over telecom networks. At the same time global competition is putting major pressure on carriers to reduce their network operating costs. This situation has led to a new set of requirements for different parts of the network. While the next session will focus on the edge of the network, this first session is aimed at Metro and Core network infrastructure with its unique set of requirements to accommodate a wide range of traffic formats with different quality of service guarantees at the lowest possible cost.

Join a panel of experts from carriers around the globe who will present trends and strategies for designing the next generation Metro and Core networks that will satisfy the communication needs of the future.

Speakers

Long-haul Network Evolution Trends
Chuck Norman, Chief Design Engineer, Sprint, USA
Chuck Norman became Chief Design Engineer of Network Solutions Development at Sprint in October 2001. In this position Norman is responsible for providing oversight of architectural development across all platforms to ensure overall network optimization with the most cost effective implementation. He is also responsible for developing promising new technologies into implementable systems to support new service opportunities while improving quality of service. In addition, Norman identifies areas of potential cost reduction, utilizing advancements in standards and technology for all customer services worldwide. Norman has been with Sprint for 25 years in various research, planning, operation and engineering roles, including Director-Network Engineering, Director-Consumer Technology Lab and Manager-Standards. Norman was awarded four patents and has several more pending for his work in SONET, DWDM and optical transport network development.

Customer Controlled Optical Networking - An ASON Service
Scott Beckett, Group Product Manager - Advanced Optical Services, AT&T, USA
Scott Beckett is a highly accomplished Product Management professional responsible for delivering innovative new AT&T products and features from concept to general availability. He is responsible for optical services, accounting for multiple billions in annual revenues and supporting Fortune 100 customers for AT&T. He is also responsible for analyzing market trends and managing introduction of new services from concept to launch. He has also been responsible
for creating MPLS-based enterprise VPN services and negotiating inter-carrier contracts for specific service offerings. Scott's expertise covers all areas tied to advanced telecommunications services, from new technologies that make them possible to the contractual arrangements with customers and realization of ongoing operations support. In his career with AT&T, Scott has received numerous awards in recognition for the contributions he has made in creating and developing telecommunications services based on emerging technologies. Scott has a B.S. in Marketing from Messiah College and a Masters Certification in Project Management from Stevens Institute of Technology.

Future Deployment of WDM Systems in the UK
Dave Johnson, 21st Century Transmission Network Designer, BT, UK

Dave Johnson has worked for BT since graduating in 1986. He initially worked on systems reliability, and then on research into self-organizing networks and novel network design and optimisation techniques. For the past six years, Dave has led a team developing solutions for BT's SDH and WDM transport networks. He currently leads a team of network designers responsible for the end to end transmission design of BT's 21st Century Network. Dave is a member of the IEE and a Chartered Engineer.

A Commercial View of Long Haul Optical Networking In the Next Five Years
Robert J. Feuerstein, Senior Architect, Level 3 Communications, USA

Robert Feuerstein joined Level 3 Communications in 1999 and evaluated the technical and financial implications of new WDM optical transport technology, amplifier hut spacing, and various mesh and ring protection architectures for the Level 3 international fiber optic network. For the past two years he has worked in the Customer Network Engineering organization to support complex customer network design requirements. Previously Dr. Feuerstein was at the University of Colorado, where he and his colleagues demonstrated the world's first stored program optical computer, synchronized with fiber optic delay lines, as well as multi-wavelength optical packet switching techniques. He also taught courses in fiber optic communications. Dr. Feuerstein served as President of the Denver Section of the IEEE LEOS from 1994-1995.

Panel II: Update on FTTX around the Globe
Moderator: David Piehler, David Piehler Consulting, USA

Delivering broadband services is rapidly becoming a cornerstone in almost every carriers' business model. Bringing fiber closer to the customer is mandatory for any successful broadband strategy. There are several options to achieve this.

One option is to bring the fiber to the customer's premises or home (FTTP/FTTH). NTT of Japan has been following this model for a few years and in 2005 announced a new program, which will connect 30 million homes with fiber by 2010. In the US, Verizon started a major FTTP program in 2004. Several other carriers, municipalities and developers in Europe and North America are implementing their own initiatives. Another option is to bring the fiber to a cabinet or node (FTTC/FTTN) and use high-speed copper technologies to cover the final drop to the customer. Many carriers are using this approach, taking advantage of ever-increasing data rates in the latest DSL technologies. Key representatives in this group are SBC and BellSouth in the US, KT in Korea, and several major PTTs in Europe.
Attend this exciting session where executives from major service providers will present their views on the opportunities and challenges for FTTX around the world.

Speakers

Verizon's FTTP Deployment
Vincent O'Byrne, Director - Technology, Verizon, USA
Vincent O'Byrne has a PhD from the University of Wales in the UK and an MBA from Babson College. He has over 18 years in the Telecommunications Industry in both Fiber-Optic Communications and Wireless Technologies. He is responsible within Verizon's Technology Organization for the definition of the requirements for Verizon's PON technologies as well as their introduction through Verizon's Integration Laboratories and First Office Application (FOA).

FTTH Market - Growth and Expansion in Japan
Hiromichi Shinohara, Director, NTT Access Network Service Systems Labs, Japan
Mr. Hiromichi Shinohara is Director of NTT Access Network Service Systems Labs. Since joining NTT's Laboratories in 1978, he has been engaged in the research and development of optical fiber cables, broadband networks and optical access systems. He also has been involved in the strategic planning of the broadband access networks.

Project Lightspeed: FTTN and FTTP - Perfect Together
Eugene L. Edmon, Executive Director, Broadband Access, AT&T Labs, USA
Gene Edmon is the Executive Director of Broadband Access for AT&T Laboratories Inc. Edmon leads a group responsible for all broadband access, except wireless. This includes all the flavors of DSL used for both consumer and business services, all access fiber technologies, and systems built on those physical layers.

Edmon joined SBC Communications in 1994. He worked in various capacities and was heavily involved in the early stages of DSL, the company s first consumer mass market broadband product. Edmon participated in making many of the key decisions for the direction of DSL service platforms and is well known in the industry. He has been a key management member of standards groups such as FSAN and FS-VDSL and has responsibility for SMEs at the DSL Forum, T1E1 and others. Prior to his current position, Edmon worked at Bell Labs for 10 years on data communications, operations systems, and telecommunication products. He has Ph.D. and MS degrees.

Being a Service Provider on an Open Wholesale FTTP Network
Paul Morris, Executive Director, Utah Telecommunication Open Infrastructure Agency (UTOPIA), USA
Paul T. Morris is Executive Director of UTOPIA, a governmental entity created by 14 Utah cities to build an open wholesale fiber optic network to all homes and businesses within the member cities. He was the City Attorney for West Valley City, Utah, from 1983-2005 and Chair of the ULCT Telecommunications Task Force since 1997. From BYU he received a B.S. degree in Business Management in 1979 and a law degree in 1982. He received a M.P.A degree from
the University of Utah in 1991. In 2004, the FTTH Council presented Paul with its Star Award. Currently, Paul is the Chair of the Smart Community International Network.

Short Courses

Sunday, March 5
12:00 p.m. - 3:00 p.m.

SC105 Modulation Formats and Receiver Concepts for Optical Transmission Systems, Sethumadhavan Chandrasekhar, Peter Winzer, Lucent Technologies, USA.
SC132 Guided Wave Integrated Optic Devices and Circuits, Leon McCaughan, Univ. of Wisconsin, USA.
SC171 Introduction to Optical Control Plane Standards and Technology: OIF UNI, GMPLS, G.ASON and All That! Greg Bernstein, Grotto Networking, USA.
SC203 40 Gb/s Transmission Systems, Design and Design Trade-offs, Martin Birk, AT&T Labs - Res., USA; Benny Mikkelsen, Mintera Corp, USA.
SC208 Specialty Optical Fiber Design and Applications, David J. DiGiovanni, OFS Labs, USA.
SC243 Next Generation SONET: How SONET is Evolving to Support Packets and Wavelengths, Ori A. Gerstel, Cisco Systems, USA.
NEW! SC260 Biomedical Diagnostic Applications of Communications Technologies, Brett E. Bouna, Harvard Medical School and Massachusetts General Hospital, USA.
NEW! SC266 Quantum Cryptography and Quantum Information, Matthew Goodman, Telcordia Technologies, USA; Richard Hughes, Los Alamos Natl. Labs, USA.

4:30 p.m. - 7:30 p.m.

SC120 Lightwave Component Measurements, Dennis Derickson, Cierra Photonics, USA.
SC133 Reliability Methodologies for Fiber-Optic Components, David Maack, JDS Uniphase, USA.
SC137 PMD: Causes, Characteristics, Measurement, Emulation and Mitigation, Paul Hernday, Fiberoptic Measurement Training and Consulting, USA.
SC177 High-Speed Semiconductor Lasers and Modulators, John Bowers, Univ. of California at Santa Barbara, USA.
SC215 Nanofabricated Lasers, Waveguides, and Dispersive Elements, Axel Scherer, Caltech, USA.
SC216 An Introduction to Optical Network Design and Planning, Jane M. Simmons, Monarch Network Architects, USA.
SC217 Hybrid Fiber Radio - The Application of Photonic Links in Wireless Communication Systems, Dalma Novak, Pharad, LLC, USA.
SC239 Short-Reach Optical Interconnects, Brian E. Lemoff, Inst. for Scientific Res., Inc., USA.
SC264 Optical Ethernet and Data Networking for Large Enterprises, Jeffrey L. Cox, Xtera Communications, USA.
NEW! SC265 Passive Optical Components and Filtering Technologies, Bruce Nyman, Princeton Lightwave, USA; Christi Madsen, Texas A&M Univ., USA.

Monday, March 6
8:30 a.m. - 12:30 p.m.

SC210 Hands-on Polarization-Related Measurements Workshop, Paul Hernday, Fiberoptic Measurement Training and Consulting, USA; Rance Fortenberry, Bookham Technology PLC, USA; Daniel Peterson, MCI, USA; Ivan T. Lima, North Dakota State Univ., USA.

9:00 a.m. - 12:00 p.m.

SC114 Passive Optical Networks and FTTX, Paul Shumate, IEEE Lasers & Electro-Optics Society, USA.
SC123 Erbium-Doped Fiber Amplifiers and Raman Fiber Amplifiers, John Zyskind, Optovia Inc., USA.
SC141 Combating Degrading Effects in Non-Static and Reconfigurable WDM Systems, Alan Willner, Univ. of Southern California, USA.
SC175 Packaging of Optoelectronic, Photonic, and MEMS Components, Paul Haugsjaa, Polycision, Inc., USA.
SC178 Test and Measurement of High-Speed Communications Signals, Greg Lecheminant, Agilent Technologies, USA.
SC241 DWDM Technology: How It Works in Communication Systems, Stamatios Kartalopoulos, Univ. of Oklahoma, USA.
SC259 Electronic and Optical Impairment Mitigation, Chris Fludger, CoreOptics GmbH, Germany.
NEW! SC261 ROADM Technologies and Network Applications, Thomas Strasser, Nistica, Inc., USA.
NEW! SC263 Installation and Maintenance of FTTP Networks, Gerd Keiser, PhotonicsComm Solutions, Inc., USA.

1:30 p.m. - 5:30 p.m.

SOLD OUT - SC101 Hands-on Workshop on Fiber Optic Measurements and Component Testing, Lorenz Cartellieri, John Kim, Experior Photonics, USA; Peter Schweiger, Agilent Technologies, Canada; Karl Merkel, Agilent Technologies, USA; Michael Kelly, Agilent Technologies GmbH, Germany; Caroline Connolly, Richard Buerli, OptoTest, USA.

2:00 p.m. - 5:00 p.m.
SC102 WDM in Long-Haul Transmission Systems, Neal S. Bergano, Tyco Telecommunications, USA.
SC103 Fast Reconfigurable WDM Optical Networks, Daniel Blumenthal, Univ. of California at Santa Barbara, USA.
SC125 Tunable Lasers, Jens Buus, Gayton Photonics Ltd., UK.
SC144 WDM Networking Elements and Their Enabling Technologies, Rod Alferness, Lucent Technologies, USA.
SC160 Microwave Photonics, Keith Williams, NRL, USA.
SC176 Metro Network Architectures, Today and Tomorrow, Joseph Berthold, Ciena Corp., USA.
SC184 Introduction to Modeling High Data Rate Optical Fiber Communications Systems, Curtis Menyuk, Univ. of Maryland, Baltimore County, USA.
SC205 Integrated Electronic Circuits for Fiber Optics, Y.K. Chen, Bell Labs, Lucent Technologies, USA.
NEW! SC267 Silicon Microphotonics: Technology Elements and the Roadmap to Implementation, Lionel Kimerling, MIT, USA.

Tuesday, March 7
8:30 a.m. - 12:30 p.m.

SC185 Hands-on Polishing, Inspection and Testing of Connectors, The Light Brigade, Inc., USA; Seikoh Giken, USA; Norland Products, USA.
SOLD OUT - SC187 Hands-on Basic Fiber Optics for the Absolute Beginner, Dennis Horwitz, Micronor Inc., USA.

2:00 p.m. - 6:00 p.m.

SOLD OUT - SC186 Hands-on Specialty Fiber Splicing, Clyde J. Troutman, 3SAE Technologies, USA.
NEW! SC269 Outside Plant Hands-on Testing and Troubleshooting, Larry Johnson, The Light Brigade, Inc., USA.

Prior Attendee Comments

Here are just a few of the many positive comments received from last year’s Short Course attendees.

“Excellent overview of the current technology!”
Attendee from SC217 Integrated Optical Networks taught by Dalma Novak

“One of the best courses and instructors yet!”
Attendee from SC160 Microwave Photonics taught by Keith Williams

“Excellent insight to real world methods.”
Attendee from SC133 Reliability Methodologies for Fiber-Optic Components taught by David Maack
“This was a well organized and well presented introduction. Thanks!”
Attendee from SC114 Passive Optical Networks and FTTX taught by Paul Shumate