Optical Packaging Challenges for Low-Cost, Data-Center Transceivers

Dr. Kenneth P. Jackson
Product Marketing Director

March 24, 2015
Photonic Integration May Enable Lower Costs, But Not Without Significant Challenges

High data-rates & optical loss budgets place increasing demands on packaging

- Small, compact, high-density designs
- Wide BW, low parasitic RF connections
- High optical coupling efficiency (over temp)
 - Planar-processed waveguides still require coupling to fibers/lasers
 - Challenging with single-mode waveguide tolerances
- Thermal management
 - Low power dissipation
 - Thermal isolation and high thermal conductivity trade-offs
- Hybrid packaging
 - Compatible (incompatible) materials & processes
Features

- Only two WDM filters
- Polarization Multiplexing

Transmittance

Wavelength L0 L1 L2 L3
WDM filter #1

Transmittance

Wavelength L0 L1 L2 L3
WDM filter #2

Estimated coupling loss: 3dB max.
Compact ROSA Design

- LC receptacle
- Collimating lens
- Quad Trans-impedance amplifier (TIA)
- Package
- Mirror
- Flexible Print Circuit (FPC) for DC
- FPC for RF
- Lens array

Thin Film Filter (TFF)-type O-DeMUX

- 4 thin-film filters
- Mirror

Back-illuminated PDs with the monolithic lens

- Monolithic lens
- Chip carrier
- PD chip

Flip chip bonding on carrier
Optical Mux Technology Candidates and Future Prospects for Integration

- Large-sized PLCs
 - Coupler/AWG
 - ~ 7dB/~4dB loss
- Small-sized space coupling
 - Filter/Polarization filter
 - ~ 3dB/~1.5dB loss
- Achieving lower costs is ongoing challenge
 - Trade-off between insertion loss & cost
 - Emergence of 2km- & 500m- links in place of 10km
 - Squeezing $$/dB for anticipated volumes can be problematic
- Historically, wider interfaces ➔ narrower ones
 - Single λ replaces multiple λ
 - More data throughput per lambda
 - Assuming reach is not significantly restricted
Optically Clear ● Wirelessly Agile ● Powerfully Reliable

-THANK YOU-