

DATA CENTER BANDWIDTH SCENARIOS

Scott Kipp

skipp@brocade.com

March 2014

Opinions expressed during this presentation are the views of the presenters, and should not be considered the views or positions of the Ethernet Alliance.

From Applications to Data Centers

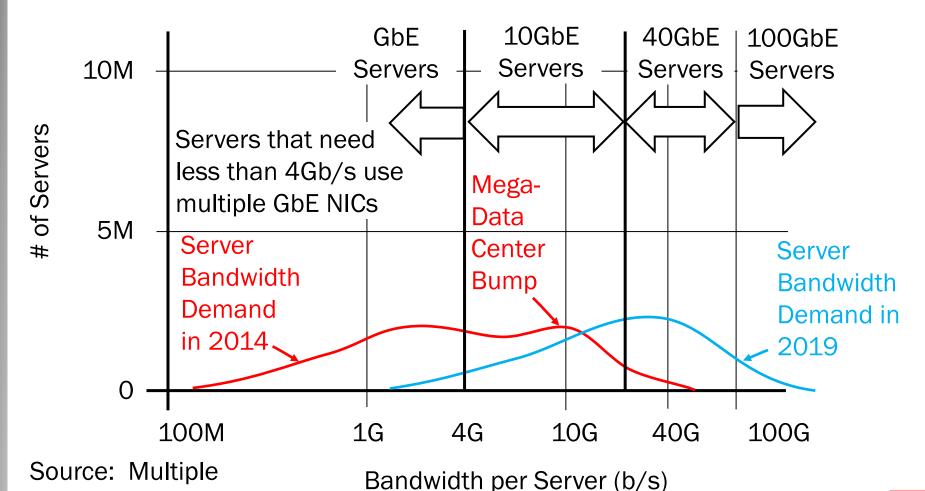
- Applications, servers, storage, networks and data centers have varied compute, bandwidth and availability requirements
 - Intel has 150 different processors for server market
 - Servers vary from <1/10U to multiple racks
 - Switch ports range from 100 Mb/s to 100 Gb/s
 - Storage devices vary from 10GB to 100s of Petabytes
 - 100 servers to 100,000 servers in a data center
- Because of the varied requirements and capabilities, it is difficult to talk about anything specific without losing something
- I'll try anyway...

Starting with Servers

Multiple Server Categories

- Microservers
- Blade Servers
- <1U Servers
- 1-2U Servers
- 4-12U Servers
- Rack and multi-rack Servers

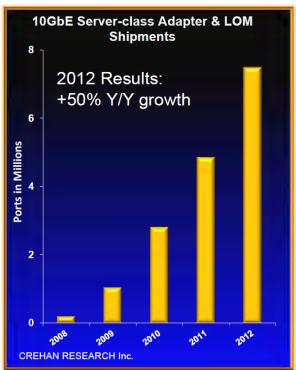
95% of Volume, Not revenue

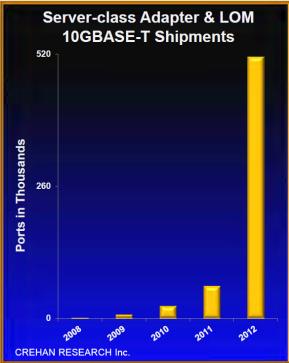


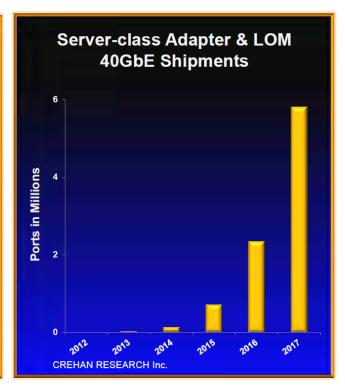
Bandwidth Requirements of Servers

~10M servers ship every year, >95% are x86

Sources and Estimates

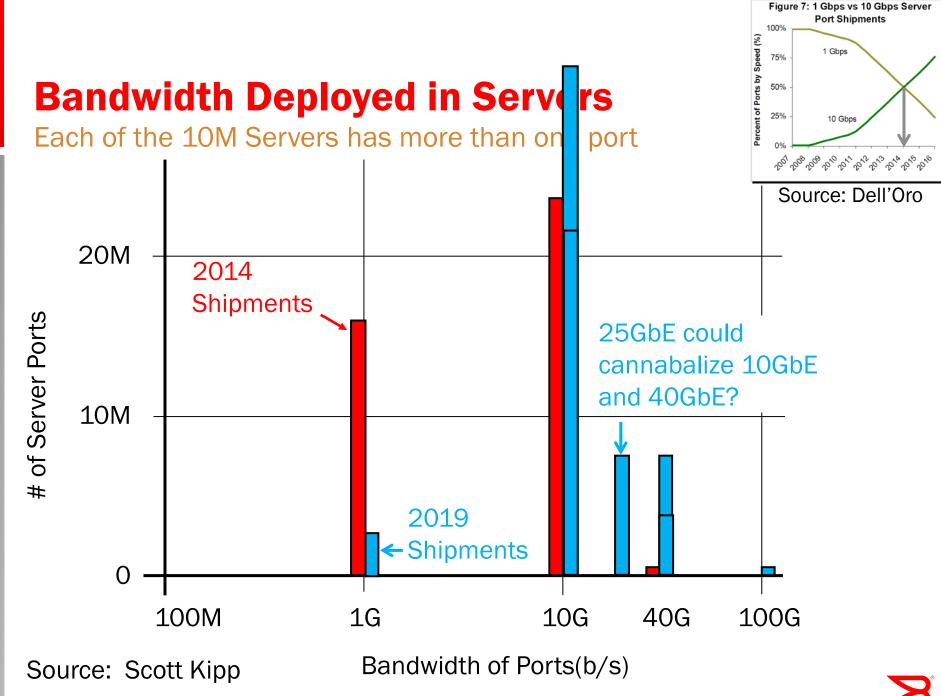

8

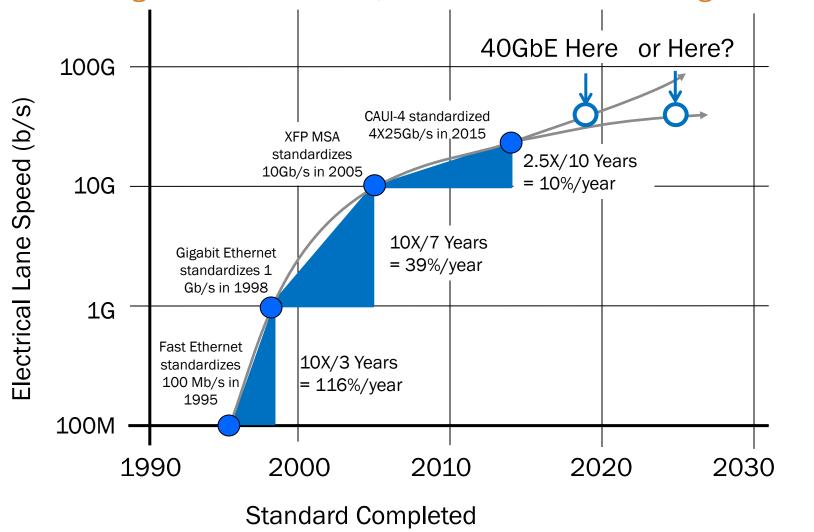

10GbE and 40GbE Server Ports


Most 10GbE Servers connect with SFP+ or 10GBASE-KR

10GBASE-T will continue to ramp but not used in mega-data centers

40GbE servers will connect with QSFP or 40GBASE-KR




Source: Crehan Research and http://www.ieee802.org/3/400GSG/index.html

Electrical Signaling Rates

10 Years to go from 10G to 25G, will it take another 10 to go to 40G?

4/4/2014 8

25GbE SFP+ or 40GbE QSFP+

Typical Server - 10GbE now, 25GbE next year and 40GbE in ?

1U Server

2X nGbE SFP+

SFP+

Duplex LC

High Performance Server - 40GbE now and 100GbE in 2016?

1U Server

2X nOGbE QSFP+

QSFP+

WHICH PROTOCOL HAS SOLD MORE OPTICAL BANDWIDTH BETWEEN 2007-2013?

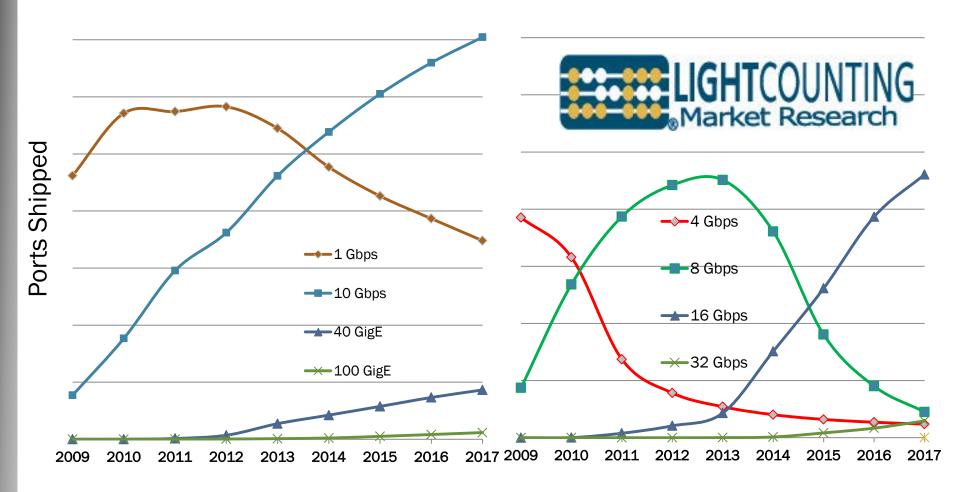
OPTICAL BANDWIDTH = NUMBER OF MODULES X SPEED OF MODULE

- a) Ethernet
- b) Infiniband
- c) Fibre Channel
- d) FTTx
- e) DWDM

Source: Lightcounting

Fibre Channel wins with 462 Petabits/second of Bandwidth!

Optical Bandwidth Sold 2007-2013


FC is >95% low cost VCSEL-based Solutions

	Modules	Data Rate	Bandwidth
Ethernet	Sold	(Gb/s)	(Petabits/s)
GbE	74,027,190	1.25	92
10GbE	29,141,697	10.3125	300
40GbE	712,604	41.25	29
100GbE	32,652	103.125	3
Total	103M		425
Fibre	Modules	Data Rate	Bandwidth
Channel	Sold	(Gb/s)	(Petabits/s)
4GFC	37,492,028	4.25	159
8GFC	33,285,112	8.5	282
16GFC	1,441,255	14.025	20
Total	72M		462

Source: Multiple Lightcounting Forecasts

Data Center Optical Port Shipments

Ethernet on much longer cycles than Fibre Channel

Source: Lightcounting July 2013 Forecast Database

8

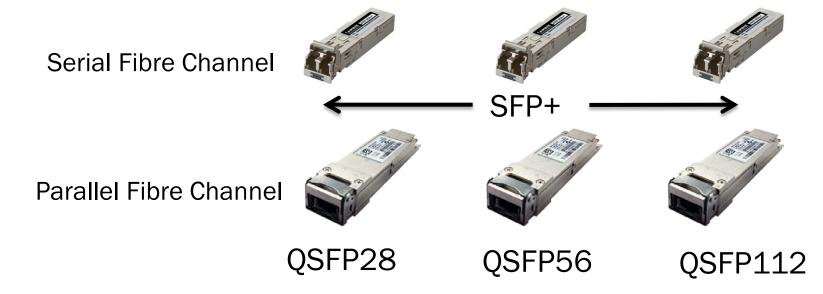
4/4/2014 12

6 Generations of Fibre Channel

Doubling the Speed as Low Cost Technology Matures

32GFC Standard Completed Last Month

Generation	1 st Gen	2 nd Gen	3rd Gen	4th Gen	5th Gen	6 th Gen
Electrical / Optical Module	1GFC / GBIC/ SFP	2GFC/ SFP	4GFC / SFP	8GFC / SFP+	16GFC/ SFP+	32GFC/ SFP+
Electrical Speeds(Gbps)	1 lane at 1.0625	1 lane at 2.125	1 lane at 4.25	1 lane at 8.5	1 lane at 14.025	1 lane at 28.05
Encoding	8b/10b	8b/10b	8b/10b	8b/10b	64b/66b	64b/66b
Availability	1997	2001	2006	2008	2011	2016



Future Generations of Fibre Channel

Serial and Parallel

Generation	6 th Gen	7 th Gen	8 th Gen
Electrical / Optical Module	32GFC and 128GFC /SFP+ and QSFP28	64GFC and 256GFC /SFP+ and QSFP56	128GFC and 512GFC /SFP+ and QSFP112
Electrical Speeds (Gbps)	1 lane of 28.05 4 lanes at 28.05	1 lanes of 56.1 4 lanes at 56.1	1 lane of 112.2 4 lanes at 112.2

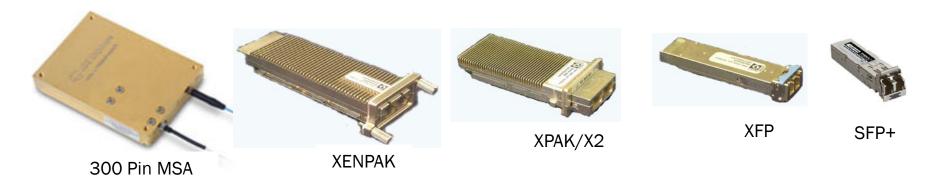
8

128GFC Overview Month ##, 200#

Ethernet Speeds

10X Increase Moving to 4X or 2.5X Increase

Name	Speed	Date Standard Ratified
10Mb/s Ethernet	10 Mb/s	1983
100Mb/s Ethernet	100Mb/s	1995
Gigabit Ethernet	1 Gb/s	1998
10 Gigabit Ethernet	10 Gb/s	2002
40 Gigabit Ethernet	40 Gb/s	2010
100 Gigabit Ethernet	100 Gb/s	2010
400 Gigabit Ethernet	400 Gb/s	2017 (est.)*


^{*}Estimated on a 4-year standardization process that started with the CFI in March 2013

4/4/2014 15

Generations of 10GbE

Fractured Market Until SFP+ Took Over

Generation	1 st Gen	2 nd Gen		3rd Gen	4 th Gen	
Optical Module	300 Pin MSA	XENPAK	XPAK	X2	XFP (Retimed)	SFP+ (Unretimed)
Electrical Speeds (Gbps)	16 lanes at 0.644	4 lane at 3.125	4 lane at 3.125	4 lane at 3.125	1 lane at 10.3125	1 lane at 10.3125
Encoding	8b/10b	8b/10b	8b/10b	8b/10b	64b/66b	64b/66b
Availability	2001	2002	2002	2003	2005	2009

Current Generations of 10GbE

SFP+ and now QSFP+ and Embedded Optics

Generation	4 th Gen	5th Gen	6 th Gen
Optical	SFP+	QSFP+	Embedded Optical
Module	(Unretimed)		Modules
Electrical	1 lane at	4 lanes at	12+ lanes at
Speeds (Gbps)	10.3125	10.3125	10.3125
Availability	2007	2011	2013

VCSEL / MMF
Dominate
-Not Silicon
Photonics/SMF
through 2020

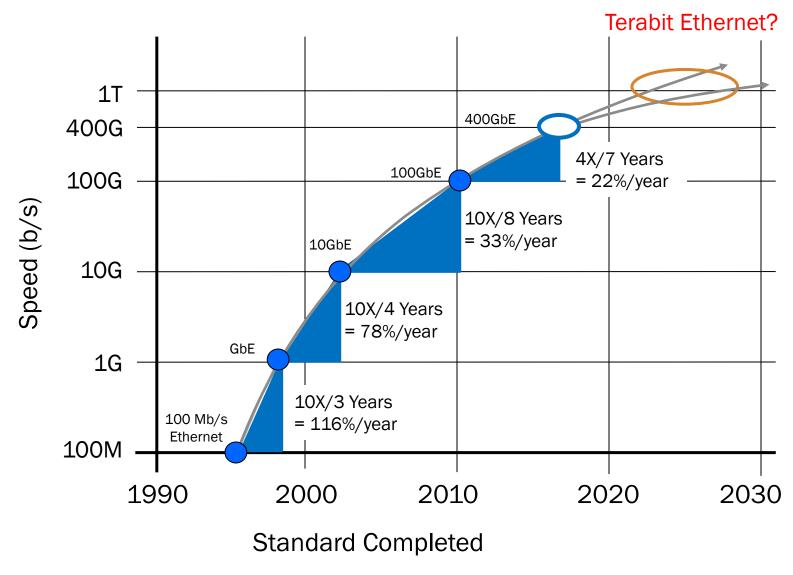
SFP+

QSFP+ 40GbE too

EOMs (Embedded Optical Modules)

Generations of 100GbE

Early Stages of 100GbE Still



Generation	1 st Gen	1.5G	2 nd Gen		3 rd Gen
Optical Module	CFP, CXP, EOM	CFP2/CPAK	QSFP28	CFP4	XFP/SFP+
Electrical Interface (Gb/s)	CAUI-10 10 lanes of retimed 10.3G	CAUI-10 and CAUI-4 4 lane at 25.8G	CAUI-4 4 lane at 25.8	CAUI-4 4 lane at 25.8	CAUI-1 1 lane at 100
Standard Availability	2010	2013	2013	2014	2024?

When do we get Terabit Ethernet?

4/4/2014 19

Ethernet Switch Bandwidth

640 Ch/c - 4940 ChE SED+ + 440 ChE OSED+

Exceeding 10 Tbps in 2020?

SFP+

QSFP+ or OSFP28

040 GD/S - 46 TOGDE SFPT + 4 40GDE QSFPT	_	
		2010

10.08 Tb/s = 252 Embedded 40 GbE ports, 126 W at 6 W / 12 SW Ports

2020?

4/4/2014

To 10 Tb/s 1U Switches

This analysis is for Switches, Routers are a Different Beast

- The best switch bandwidth increases are within an ASIC and combine increasing:
 - Switch ASIC Port count 64 =>128 => 256?
 - Port Speed $10G => 25/28G => 40G => 50/56G \rightarrow 100G$?
 - >10Tb/s 1U switches possible this decade
- Embedded optics enable significant bandwidth port density increases to overcome faceplate density challenges
- Pluggable optics enable significant flexibility in deployments, but are facing limitations
- Combinations of pluggable and embedded optics can be effective in meeting all data center needs

4/4/2014

THANK YOU