• A Hybrid Conference – In-Person and Virtual Presentations
  • Technical Conference:  24 – 28 March 2024
  • Exhibition: 26 – 28 March 2024
  • San Diego Convention Center, San Diego, California, USA

New Record Set for Data-Transfer Speeds

PRESS RELEASE

25 February 2014

Contact:
Lyndsay Meyer OFC 2014 202.416.1435 lmeyer@osa.org

New Record Set for Data-Transfer Speeds

IBM Researchers Set Milestone, which Suggests Existing Technology for Short-Range Data Transmission May be Fast Enough for Years to Come

See caption below
In the foreground are 2 Chalmers VCSELs. The one on the left has a 6um aperture and could operate error free up to 62Gb/s while the one on the right has a 5um aperture and set the equipment limited record of 64Gb/s. Behind the two VCSELs is IBM's BiCMOS8HP VCSEL driver IC. On either side of the IC are the decoupling capacitors and connecting wirebonds. Credit: IBM

WASHINGTON, Feb. 25, 2014 – Researchers at IBM have set a new record for data transmission over a multimode optical fiber, a type of cable that is typically used to connect nearby computers within a single building or on a campus. The achievement demonstrated that the standard, existing technology for sending data over short distances should be able to meet the growing needs of servers, data centers and supercomputers through the end of this decade, the researchers said.
 
Sending data at a rate of 64 gigabits per second (Gb/s) over a cable 57 meters long using a type of laser called a vertical-cavity surface-emitting laser (VCSEL), the researchers achieved a rate that was about 14 percent faster than the previous record and about 2.5 times faster than the capabilities of today's typical commercial technology.
 
To send the data, the researchers used standard non-return-to-zero (NRZ) modulation. “Others have thought that this modulation wouldn't allow for transfer rates much faster than 32 Gb/s,” said researcher Dan Kuchta of the IBM T.J. Watson Research Center in New York. Many researchers thought that achieving higher transmission rates would require turning to more complex types of modulation, such as pulse-amplitude modulation-4 (PAM-4).
 
"What we're showing is that that's not the case at all," Kuchta said. Because he and his colleagues achieved fast speeds even with NRZ modulation, he added, "this technology has at least one or two more generations of product life in it."
 
Kuchta will describe these results at the 2014 OFC Conference and Exposition, being held March 9-13 in San Francisco.
 
To achieve such high speeds, the researchers used the VCSEL lasers developed at Chalmers University of Technology in Sweden and custom silicon-germanium chips developed at IBM Research. “The receiver chip is a unique design that simultaneously achieves speeds and sensitivities well beyond today’s commercial offerings,” Kuchta explained. “The driver chip incorporates transmit equalization, which widens the bandwidth of the optical link. While this method has been widely used in electrical communication, it hasn't yet caught on in optical communication,” he said.
 
“Researchers typically rely on a rule of thumb that says the usable data-transfer rate is about 1.7 times the bandwidth,” Kuchta explained. “That means that with the VCSEL laser, which has a bandwidth of about 26 GHz, the rate would be only about 44 Gb/s.”
 
"What we're doing with equalization is we're breaking the historical rule of thumb," Kuchta said.
 
The fast speeds only worked for a distance of 57 meters, so this technology isn't designed for sending data across continents. Instead, it's most suitable for transmitting data within a building, he said. About 80 percent of the cables at data centers and most, if not all, of the cables used for typical supercomputers are less than 50 meters long.
 
This new technology, Kuchta added, is ready for commercialization right now.
 
Presentation Th3C.2, titled “64Gb/s Transmission over 57m MMF using an NRZ Modulated 850nm VCSEL,” will take place Thursday, March 14 at 1:30 p.m. in room 121 of the Moscone Center.
 
PRESS REGISTRATION: A press room for credentialed press and analysts will be located in the Moscone Center, Sunday through Thursday, March 9-13. Those interested in obtaining a press badge for OFC should contact Lyndsay Meyer at 202.416.1435 or lmeyer@osa.org.
 
About OFC
For more than 35 years, OFC has been the premier destination for converging breakthrough research and innovation in telecommunications, optical networking, fiber optics and, recently, datacom and computing. Consistently ranked in the top 200 tradeshows in the United States, and named one of the Fastest Growing Trade Shows in 2012 by TSNN, the conference unites service providers, systems companies, enterprise customers, IT businesses, and component manufacturers, with researchers, engineers, and development teams from around the world. OFC includes dynamic business programming, an exposition of more than 550 companies, and cutting-edge peer-reviewed research that, combined, showcase the trends and pulse of the entire optical networking and communications industry. OFC is managed by The Optical Society (OSA) and co-sponsored by OSA, the IEEE Communications Society (IEEE/ComSoc), and the IEEE Photonics Society.  OFC 2014 takes place March 9-13 at the Moscone Convention Center in San Francisco, Calif., USA.